

Contents lists available at ScienceDirect

Journal of Differential Equations

Stability of parabolic problems with nonlinear Wentzell boundary conditions

Giuseppe M. Coclite a,*, Gisèle R. Goldstein b, Jerome A. Goldstein b

ARTICLE INFO

Article history:
Received 12 May 2008
Revised 3 October 2008
Available online 7 November 2008

MSC: 35K05 47H02 35K60

Keywords: Heat equation Nonlinear Wentzell boundary condition Stability

ABSTRACT

Of concern is the nonlinear uniformly parabolic problem

$$u_t = \operatorname{div}(A\nabla u), \qquad u(0, x) = f(x),$$

$$u_t + \beta \partial_x^A u + \gamma(x, u) - q\beta \Delta_{\mathrm{IR}} u = 0,$$

© 2008 Elsevier Inc. All rights reserved.

^a Department of Mathematics, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy

^b Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

^{*} Corresponding author.

E-mail addresses: coclitegm@dm.uniba.it (G.M. Coclite), ggoldste@memphis.edu (G.R. Goldstein), jgoldste@memphis.edu (J.A. Goldstein).

URLs: http://www.dm.uniba.it/members/coclitegm (G.M. Coclite), http://www.msci.memphis.edu/faculty/goldsteing.html (G.R. Goldstein), http://www.msci.memphis.edu/faculty/goldsteinj.html (J.A. Goldstein).

1. Introduction

This paper deals with real solutions of the following parabolic problem with nonlinear Wentzell (or dynamics) boundary conditions

$$\begin{cases} u_{t} = \operatorname{div}(\mathcal{A}\nabla u), & \text{in } (0, \infty) \times \Omega, \\ u(0, \cdot) = f, & \text{in } \Omega, \\ u_{t} + \beta \partial_{\nu}^{\mathcal{A}} u + \gamma(x, u) - q\beta \Delta_{\mathsf{LB}} u = 0, & \text{on } (0, \infty) \times \partial \Omega. \end{cases}$$

$$(1.1)$$

We extend the stability results obtained in [5], where we considered the linear problem corresponding to the choice $\gamma(x, u) = \gamma(x)u$.

Such an initial-boundary value problem can model a diffusion process, for example, the heat equation with a heat source on the boundary. When the heat source on the boundary depends nonlinearly on the heat flow across and the temperature on the boundary and the heat can transfer along the boundary, we obtain a boundary condition of the form in (1.1) (see [16] for a derivation of such boundary conditions). Many authors have considered parabolic problems with dynamic (and the related general Wentzell) boundary conditions (cf. [9-12,14,22-25]).

In this paper we assume

- (i) $\Omega \subset \mathbb{R}^N$, $N \geqslant 1$, is a bounded open set with C^2 boundary; (ii) $\mathcal{A} = \{a_{ij}\}_{ij} \in C^1(\overline{\Omega}; \mathbb{R}^{N \times N})$ is symmetric and uniformly elliptic, in particular there exist two constants $\alpha_1 \geqslant \alpha_0 > 0$ such that

$$\alpha_0|\xi|^2 \leqslant \langle \mathcal{A}(x)\xi, \xi \rangle \leqslant \alpha_1|\xi|^2$$
,

for each $x \in \overline{\Omega}$, $\xi \in \mathbb{R}^N$;

- (iii) $\beta \in C(\partial \Omega)$ and $\beta_1 \geqslant \beta(x) \geqslant \beta_0 > 0$, for some constants β_1 , β_0 , and every $x \in \partial \Omega$;
- (iv) $0 \le q < \infty$ is a given constant;
- (v) Δ_{LB} is the Laplace–Beltrami operator on $\partial \Omega$;
- (vi) $\partial_{\nu}^{\mathcal{A}}$ is the conormal derivative operator on the boundary, namely

$$\partial_{\nu}^{\mathcal{A}}u = \langle \mathcal{A}\nabla u, \nu \rangle = \sum_{ij} a_{ij} \partial_{x_i} u \nu_j,$$

where ν is the unit outer normal at $x \in \partial \Omega$:

- (vii) $f \in H^1(\Omega)$; concerning the trace of f on $\partial \Omega$, when q > 0 we require that $\nabla_{\tau} f \in L^2(\partial \Omega)$, where ∇_{τ} is the tangential gradient;
- (viii) $\gamma: \partial \Omega \times \mathbb{R} \to \mathbb{R}$, $\gamma(\cdot, 0) = 0$, for each $x \in \partial \Omega$ the function $\gamma(x, \cdot)$ is nondecreasing, and

$$\left|\gamma(x,u)\right| \leqslant \Gamma(|u|^p + 1),\tag{1.2}$$

for some positive constants Γ , p such that

$$p \begin{cases} \leq \frac{N}{N-2} & \text{if } N \geq 3, \\ < \infty & \text{otherwise.} \end{cases}$$
 (1.3)

All of the above coefficients are assumed to be real-valued.

As a consequence of (viii) we have that

$$u \geqslant 0$$
 implies $\gamma(x, u) \geqslant 0$, $u \leqslant 0$ implies $\gamma(x, u) \leqslant 0$, (1.4)

and in particular

Download English Version:

https://daneshyari.com/en/article/4613047

Download Persian Version:

https://daneshyari.com/article/4613047

Daneshyari.com