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Abstract

Based on a refined energy method, in this paper we prove the global existence and uniform-in-time

stability of solutions in the space Lg(H;V ) to the Cauchy problem for the Boltzmann equation around a

global Maxwellian in the whole space R3. Compared with the solution space used by the spectral analysis
and the classical energy method, the velocity weight functions or time derivatives need not be included
in the norms of L2(H){V ), which is realized by introducing some temporal interactive energy functionals
to estimate the macroscopic dissipation rate. The key proof is carried out in terms of the macroscopic
equations together with the local conservation laws. It is also found that the perturbed macroscopic variables
actually satisfy the linearized compressible Navier—Stokes equations with remaining terms only related to
the microscopic part.
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1. Introduction

The Boltzmann equation for the hard-sphere monatomic gas in the whole space R? takes the
form

O f+&-Vif=0(f 1) (1.1)

Here, the unknown f = f (¢, x, &) is a non-negative function standing for the number density of
gas particles which have position x = (x1, x2, x3) € R3 and velocity &€ = (&1,&,&3) € R3 at time
t > 0. Q is the bilinear collision operator defined by

0(f.g) = / (Fg, — fe)| € — &) - | dods,.

R3x S?
f=rax8, [fl=f0xE), g=gtx &), g =g(tx &),
F=t-[E-8) 0lo, &=L+[E-8) 0o, weS
We define the perturbation u = u(t, x, &) by

f =M+ +vMu, (1.2)

where the global Maxwellian

1
M= o oxp(-I£1/2)

is normalized to have zero bulk velocity and unit density and temperature. Then the equation for
the perturbation u reads

ou+&-Vyu=Lu+ I'(u, u), (1.3)
where
Lu = \/LM[Q(M, VMu) + Q(\/MM,M)],

I'(u,u) = \/LMQ(\/MM’ \/1\_/[u).
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