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a b s t r a c t

Volume image registration remains one of the best candidates for Graphics Processing Unit (GPU)
acceleration because of its enormous computation time and plentiful data-level parallelism. However,
an efficient GPU implementation for image registration is still challenging due to the heavy utilization
of expensive atomic operations for similarity calculations. In this paper, we first propose five
GPU-friendly Correlation Ratio (CR) based methods to accelerate the process of image registration.
Compared to widely used Mutual Information (MI) based methods, the CR-based approaches require less
resource for shadow histograms, a faster storage, such as the on-chip scratchpad memory, therefore can
be fully exploited to achieve better performance. Second, we make design space exploration of the
CR-based methods, and study the trade-off of introducing shadow histograms on different storage
(shared memory, global memory) by computation units of different granularity (thread, warp, thread
block). Third, we exhaustively test the proposed designs on GPUs of different generations (Fermi,
Kepler and Maxwell) so that performance variations due to hardware migration are addressed. Finally,
we evaluate the performance impact corresponding to the tuning of concurrency, algorithm settings as
well as overheads incurred by preprocessing, smoothing and workload unbalancing. We highlight our last
CR approach which completely avoids updating conflicts of histogram calculation, leading to substantial
performance improvements (up to 55� speedup over naive CPU implementation). It reduces the registra-
tion time from 145 s to 2.6 s for two typical 256 � 256 � 160 volume images on a Kepler GPU.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Volume image registration (VIR), the process of generating a
transformation that maximizes the similarity between two volume
images [1] (see Fig. 1), is one of the fundamental components
frequently encountered in many medical image processing
applications [2]. Among various medical registration frameworks,
FMRIB’s Linear Image Registration Tool (FLIRT) [3,4] is reported
to be effective and robust [5]. Several similarity functions are
exploited in FLIRT, the default one, however, is Correlation Ratio
(CR) [6]. Based on information theory, CR exhibits comparative
robustness and stability as the Mutual Information (MI) methods
[4,7]. It is also reported that CR is more accurate and easier to com-
pute than MI [4], which is confirmed by this paper as well.

VIR traditionally requires enormous computation time (e.g.
registering two 256 � 256 � 160 images spends 145 s). The

calculation of the similarity function, however, is the most domi-
nant component which takes over 98% of the registration time.
Meanwhile, the similarity function is inherently data parallel [8]
as voxels of the volume images can be processed independently.
Therefore, ever since Nvidia published Compute Unified Device
Architecture (CUDA) [9], people are seeking to accelerate VIR as
well as the similarity function calculations via GPU. However, an
efficient GPU implementation for VIR is still challenging due to
heavy utilization of expensive atomic operations for similarity cal-
culations, which frequently turn into a performance bottleneck
[10]. Although several approaches are proposed [10–14], most of
them are specifically targeted for MI and still fail to resolve the
bottleneck very effectively.

In this paper, we show that, compared to MI, the CR-based sim-
ilarity functions are more suitable for the GPU platform. We thus
explore the design space of CR and propose five CR-based similarity
function implementations. The FLIRT registration framework is
implemented to embed these similarity functions to construct a
complete registration procedure. We show the trade-off between
benefits and overheads of mapping local sub-histograms (or
shadow histograms) to different storage (shared memory, global

http://dx.doi.org/10.1016/j.micpro.2015.04.002
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author is currently at: Eindhoven University of Technology,
Eindhoven, The Netherlands.

E-mail addresses: ang.li@tue.nl (A. Li), akash@nus.edu.sg (A. Kumar), ha-y@i2r.
a-star.edu.sg (Y. Ha), h.corporaal@tue.nl (H. Corporaal).

Microprocessors and Microsystems 39 (2015) 998–1011

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.04.002&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.04.002
mailto:ang.li@tue.nl
mailto:akash@nus.edu.sg
mailto:ha-y@i2r.a-star.edu.sg
mailto:ha-y@i2r.a-star.edu.sg
mailto:h.corporaal@tue.nl
http://dx.doi.org/10.1016/j.micpro.2015.04.002
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


memory) by execution units of different granularity (thread, warp,
thread block). The proposed designs are exhaustively tested on
GPUs of different generations (Fermi, Kepler and Maxwell) so that
performance variations due to hardware migrations are addressed.
Further, the performance impact corresponding to the tuning of
concurrency, algorithm settings (such as the number of bins) as well
as overheads induced by preprocessing, smoothing and workload
unbalancing are also evaluated. It is highlighted that, in the last pro-
posed scheme, the updating conflicts of histogram calculation are
completely avoided, leading to substantial performance improve-
ments. Our best scheme achieves over 55� speedup compared to
the original FLIRT version on CPU, which reduces the registration
time from 145 s to 2.6 s for typical 256 � 256 � 160 3D images on
a Kepler platform. Hence, the contributions of this paper are:

� Five CR based registration implement schemes for GPU. To the
best of our knowledge, this is the first time the CR method is
reported to be employed for image registration on GPUs.
Experimental results show that CR outperforms MI, both on
speed and accuracy.
� A novel design that completely eliminates the updating con-

flicts. This highlights the significant advantage of CR over MI
on the GPU platforms.
� The trade-off between benefits of exploiting shadow histograms

and its concomitant overhead based on comparisons among dif-
ferent schemes.
� An exhaustive and detailed evaluation of the schemes for differ-

ent generations of GPUs. In this way, we address the stability
and portability of the proposed designs while acquiring more
details about the hardware capabilities.

The rest of the paper is organized as follows. Section 2 intro-
duces the background of image registration, FLIRT framework
and histogram calculation. Section 3 presents the proposed
schemes to implement the CR similarity function. Section 4 vali-
dates these schemes on hardware. Section 5 discusses the related
performance considerations. Section 6 reviews related works.
Finally, Section 7 draws the conclusion.

2. Background

In this section, we first briefly describe the meaning of image
registration, the process of FLIRT framework and the definition of
Correlation Ratio. We then present histogram calculation and
explain why conflicts exist.

2.1. Image registration

Image registration is the process of determining a transforma-
tion that maps points from one image (source image) to their

homologous points in another image (reference image). It is gener-
ally formalized as a cost optimization problem. Its cost function
measures the similarity degree between two images. Therefore,
the optimization process is attributed as the search for a transform
that minimizes the cost function (i.e. maximizes similarity):

Calculate Transform
such that similarityðA; BÞ is maximized
where A ¼ reference image;

B ¼ Transformðsource imageÞ

Fig. 1 illustrates the process of image registration. The
Transformed Image is produced by applying the transform function
on the Source Image. The similarity between the Transformed Image
and the Reference Image is then calculated, which is returned to the
optimizer. Based on the similarity, the optimizer iteratively tunes
the transform function until finally the Transformed Image and
the Reference Image show the best similarity.

In order to tune the transform function, we need to parameter-
ize it. In this paper, affine registration is considered, so the trans-
form is affine transform, which can be expressed as:

transformed image ¼ M � source imageþ~b

where M is a 3� 3 matrix; ~b is a vector. The 3� 4 matrix ½M b� is
labeled as a transform matrix that uniquely defines a transform
function. Therefore, the transform parameter shown in Fig. 1 is in
fact a transform matrix.

During the search process various searching strategies are
employed to enhance the possibility of obtaining an optimal trans-
form, while reducing search time. These strategies comprise a
searching framework.

2.2. FLIRT framework

FLIRT algorithm [3,4] is one of such searching frameworks. It is
composed of four stages – each stage focuses on a specific resolu-
tion, from 8 mm, 4 mm, 2 mm to 1 mm progressively. A stage con-
tains a series of local searches in which four spaces are traversed:
rotation, translation, scale and skew. Each space is three dimen-
sional ðX;Y; ZÞ, so if one dimension is represented by one degree
of freedom (DOF), at maximum a 12-DOF search can be performed.

The primary 8 mm searching stage first executes a rotation
space searching with a stride of 60 degrees, thus 6� 6� 6 times
to cover the whole space (360 degrees for all three dimensions).
For each checkpoint, a 4-DOF (i.e. rotation and global scale) local
search is done. Then another rotation space search with a finer

stride of 18 degrees is executed. This time, ð360=18Þ3 ¼ 8000 trials
are required. However, unlike the coarse grain search, for every
checkpoint, we only evaluate that specific spot instead of initiating
a complete local search. Afterwards, three transformation matrices
that generate the minimum cost are selected to execute a 7-DOF
(i.e. rotation, translation and global scale) full search. The obtained
matrices are marked as candidates for the next stage.

In the second 4 mm stage with 4 mm resolution, a 7-DOF (i.e.
rotation, translation and global scale) search is applied to the three
candidates together with their 30 neighbors (for each candidate,
two perturbations on each rotation dimension with 9 degree devi-
ation, four perturbations on scaling with zoom in and zoom out by
a factor of 0.1 and 0.2). The best transformation is found out as
input for the next stage.

In the 2 mm stage, a 7-DOF (i.e. rotation, translation and global
scale), 9-DOF (i.e. rotation, translation and scale) and 12-DOF (i.e.
rotation, translation, scale and skew) local search are performed
alternately, further approaching the global optimal.

Fig. 1. Image registration. In the example, the source image is a raw MRI image
while the reference image is a template. The registration framework measures the
similarity between the transformed image and the reference image and tunes the
transform matrices accordingly based on the searching strategies. After registration,
the raw image is supposed to be aligned with the template when applying the
obtained transform.
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