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Abstract

This paper is concerned with the Cauchy problem of the Cahn–Hilliard equation

⎧⎨
⎩

∂u

∂t
+ �ϕ(u) + �2u = 0, x ∈ RN, t > 0,

u|t=0 = u0(x), x ∈ RN .

First, we construct a local smooth solution u(t, x) to the above Cauchy problem, then by combining some
a priori estimates, Sobolev’s embedding theorem and the continuity argument, the local smooth solu-
tion u(t, x) is extended step by step to all t > 0 provided that the smooth nonlinear function ϕ(u) satisfies
a certain local growth condition at some fixed point ū ∈ R and that ‖u0(x) − ū‖L1(RN) is suitably small.
Secondly, we show that the global smooth solution u(t, x) satisfies the following temporal decay estimates:

∥∥Dk
(
u(t, x) − ū

)∥∥
Lp(RN)

� c(τ )(1 + t)
− k

4 − N
4 (1− 1

p
)
, t � τ > 0, k = 0,1, . . . .

Here p ∈ [1,∞], c(τ ) > 0 is a constant depending on τ and τ > 0 is any positive constant which can
be chosen sufficiently small. At last, we show that, under a strong assumption on the growth of the non-
linear function ϕ(u) at u = ū, the asymptotics of solutions of the above Cauchy problem is described by

ū + δ0t− N
4 G( x

4√t
). Here δ0 = ∫

RN (u0(x) − ū) dx, G(x) = ∫
RN exp(−|η|4 + ix · η)dη.
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1. Introduction and the statement of our main results

The Cahn–Hilliard (CH) equation

∂u

∂t
+ �ϕ(u) + �2u = 0, x ∈ RN, t > 0,

describes phase separation in binary alloys. When such compounds are cooled rapidly to low
temperatures below the critical point, they tend to form quickly inhomogeneities forming a gran-
ular structure. This phenomenon is called the spinodal decomposition. As a model to describe this
phenomenon, CH equation has intrigued many mathematicians’ interest and some good results
have been obtained (see [1,3,4,8] and references therein). However the presence of the fourth-
order differential operator together with the appearance of the nonlinear term �ϕ(u) make its
mathematical analysis much difficult than the corresponding second-order equations. Therefore
the mathematical results on the CH equation are far from being perfect.

To go directly to the theme of this paper, we only review some former results closely related
in the following (a complete list of literatures on the CH equation is beyond the scope of this
manuscript, interested authors are referred to [1,3,4,8] and references cited therein): For the one-
dimensional case, Charles, M. Ellot and S.M. Zheng studied the following initial–boundary value
problem in [1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ γ

∂4u

∂x4
= ∂2ϕ(u)

∂x2
, 0 < x < L, 0 < t < T,

∂u(0, t)

∂x
= ∂u(L, t)

∂x
,

∂3u(0, t)

∂x3
= ∂3u(L, t)

∂x3
,

u(x,0) = u0(x), 0 � x � L,

ϕ(u) = γ2u
3 + γ1u

2 − u.

(1.1)

They have found that the sign of γ2 in (1.1)4 is crucial: If γ2 > 0, there is a unique global smooth
solution for the initial–boundary value problem (1.1) for any initial data u0 ∈ H 2(R,R), while if
γ2 < 0, the solution must blow up in a finite time for large initial data.
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