
Hardware/software co-design for a high-performance Java Card
interpreter in low-end embedded systems

Massimiliano Zilli a,⇑, Wolfgang Raschke a, Reinhold Weiss a, Johannes Loinig b, Christian Steger a

a Graz University of Technology, Institute of Technical Informatics, Graz, Austria
b NXP Semiconductors Austria GmbH, Gratkorn, Austria

a r t i c l e i n f o

Article history:
Available online 24 May 2015

Keywords:
Hardware/software co-design
Smart card
Java Card
Java interpreter
Hardware-supported interpreter
Application specific instruction set
processor

a b s t r a c t

Java Card is a Java running environment specific for smart cards. In such low-end embedded systems, the
execution time of the applications is an issue of first order. One of the components of the Java Card Virtual
Machine (JCVM) playing an important role in the execution speed is the bytecode interpreter. In Java sys-
tems the main technique for speeding-up the interpreter execution is the Just-In-Time compilation (JIT),
but this resource consuming technique is inapplicable in systems with as restricted resources available as
in smart cards.

This paper presents a hardware/software co-design solution for the performance improvement of the
interpreter. In the software domain, we adopted a pseudo-threaded code interpreter that allows a better
run-time performance with a small amount of additional code. In the hardware domain, we proceeded
moving parts of the interpreter into hardware, giving origin to a Java Card interpreter based on an appli-
cation specific instruction set processor.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Smart cards are nowadays a widespread technology used
mainly in the field of banking, telecommunication, and identifica-
tion. Typical hardware configurations are based on 8/16 bits pro-
cessors with some kilobytes of RAM and up to a few hundred
kilobytes of non-volatile memory, distributed between ROM,
Flash and EEPROM memory. In such small devices, the program-
ming language for the applications development is often C or
assembly in order to keep the code size small and the performance
high. Issues that arise with these kinds of languages are the porta-
bility and the update of the applications. An interpreted language
like Java alleviates these problems, also adding a high degree of
security to the run-time environment.

Because of the resource constraints in smart cards, the adoption
of a complete Java standard is unfeasible. Java Card standard is a
reduced version of Java targeted for smart cards [1,2]. Java Card
inherits the main features of Java, easing object oriented program-
ming and the compile once run anywhere feature. The applications
for Java Card are distributed in form of CAP files for the executable

binaries and of export files for the interface binaries. The CAP file
contains the intermediate code in form of bytecodes that is the
result of the Java compilation. In this paper we use the terms
‘‘Java bytecode’’ to indicate the result of the Java compilation,
and to distinguish it from the machine instructions (opcodes) that
constitute the instruction set of the processor. Once the application
has been installed on the smart card, its execution starts and con-
tinues until the application is uninstalled.

Like Java, Java Card Virtual Machine has an interpreter whose
task is the interpretation of the Java bytecodes. The Java interpreter
is a critical part of the Java Card Virtual Machine (JCVM), since it
directly affects the execution time of the applications. This aspect
is very important in industry, since applications often have very
strict requirements. In standard Java, the interpreter has been sub-
ject of many optimization techniques aimed to improve the execu-
tion speed, but these techniques are not applicable on smart cards,
because of the limited resources available.

In this paper, we propose a hardware/software co-design solu-
tion that improves the performances of the Java Card interpreter.
In the software domain we adopted a pseudo-threaded code solu-
tion for the interpreter; in the hardware domain, we integrated
parts of the interpreter into the microcontroller architecture. We
investigated three solutions with different degrees of integration
of the interpreter into the microcontroller architecture and com-
pared them to a classic interpreter implementation.

http://dx.doi.org/10.1016/j.micpro.2015.05.004
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: massimiliano.zilli@gmail.com (M. Zilli), wolfgang.raschke@

tugraz.at (W. Raschke), rweiss@tugraz.at (R. Weiss), johannes.loinig@nxp.com
(J. Loinig), steger@tugraz.at (C. Steger).

Microprocessors and Microsystems 39 (2015) 1076–1086

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.05.004&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.05.004
mailto:massimiliano.zilli@gmail.com
mailto:wolfgang.raschke@tugraz.at
mailto:wolfgang.raschke@tugraz.at
mailto:rweiss@tugraz.at
mailto:johannes.loinig@nxp.com
mailto:steger@tugraz.at
http://dx.doi.org/10.1016/j.micpro.2015.05.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


The structure of the rest of the paper is as follows. Section 2
reviews the previous literature related to this research. Section 4
provides a functional description of the hardware aided interpreter
architectures. Section 5 gives an overview of the design and the
implementation for the software and hardware part of the Java
Card interpreter. Section 6 presents the results on the performance
evaluation of the proposed interpreters. In Section 7 we report our
conclusions and an outlook on future work.

2. Related work

The interpreter of Java Card Virtual Machine is usually a classic
interpreter ideally based on a huge switch wrapped by a while loop
[3]. This solution is simple and compact in terms of ROM code size,
but suffers from low speed performance. Nevertheless, the classic
interpreter is a clean solution that executes hardware independent
code, and hence, complies with the compile once run anywhere
model. An alternative interpreter is the direct threaded interpreter
(DTI) [4–6]. This interpreter is based on a compiler that produces a
machine depended code. In fact, the executable code consists of a
sequence of subroutine addresses that have to be handled; the
presence of machine specific addresses into the executable code
makes the latter not portable. The portability problem is solved
in [5] separating the compilation of the application in two phases:
the first produces a preliminary code that is portable, while the
second creates the threaded code.

An application of the DTI to the Java System is proposed in [7].
Analogously to [5], the problem of the portability is overcome by
adopting a pre-execution phase that transforms the Java bytecode
into threaded code. This solution hardly fits into a Java Card envi-
ronment, because of the remarkable increase of the executable
code size (i.e. in an architecture with 16-bit wide address space,
the executable threaded code would be about twice the size of
the original bytecode).

The main approach to reduce execution time present in most
widely spread Java environments is the Just-In-Time (JIT) compila-
tion [8–11]. Instead of being interpreted, the bytecodes are com-
piled into machine code performing optimizations that make
their execution faster than a normal interpretation. Although this
mechanism is very effective in general purpose systems and
high-end embedded systems, it is not applicable in smart cards
because of the high amount of RAM it needs for storing the com-
piled code.

To overcome the issue of limited resources in smart cards, some
authors have proposed alternative methods. Azevedo et al. intro-
duced an Annotation Aware Virtual Machine able to recognize anno-
tations that indicate foldable sequences [12]. Hence, during the
execution, when the virtual machine encounters an annotation, it
executes the superoperator relative to the foldable sequence
instead of the normal bytecode sequence. Since the superoperator
is an optimized form of the bytecode sequence, the execution is
faster than in the plain interpretation.

Another direction in which research has gone for enhancing
performance in Java is the hardware implementation of the Java
Virtual Machine. The hardware acceleration can be achieved in
two main ways, a direct Java bytecode execution or a Java bytecode
translation. McGham et al. proposed picoJava [13], a Java processor
that executes Java bytecodes directly on hardware. The Java virtual
machine is completely implemented in hardware and the Java
bytecodes constitute the instruction set of the processor. In this
model there is no longer an interpreter, because the processor exe-
cutes the Java bytecode natively, with outstanding runtime perfor-
mance. A problem of this architecture is the integration with
established operating systems or existing applications, since the
processor is not able to execute programs written in other

programming languages. An example of bytecode translation into
native machine op-code sequences is ARM Jazelle [14]. The inte-
gration of the Jazelle with existing operating systems and the con-
current execution of other applications written in other
programming languages is possible using the extended instruction
set.

The instruction set extension is common practice in application
specific instruction set processor (ASIP) [15,16]. With the new
opcodes of the instruction set, it is indeed possible to activate hard-
ware functionalities added for the purpose of enhancing the per-
formance of a specific application. In the solution that we
propose in this paper we extended the instruction set of a micro-
controller to support a pseudo-threaded interpreter whose fetch–
decode part is executed in hardware. The execution phase of the
Java bytecodes is kept in software for taking advantage of its flex-
ibility. The latter is indeed necessary, for example, to add security
checks inside the Java bytecode functions [17].

3. The architecture

This section presents a view over the architecture of the Java
Card technology to permit the reader to further easily identify
the parts object of this work. Smart cards can be seen as the
composition of a hardware part (the microcontroller) and a
software part. Usually, the latter is composed by two parts, the
firmware layer and the applications. In embedded systems, to
collect the functionalities commonly used by the applications and
to run more than one application at once, the firmware layer often
reaches such a level of complexity that it can be considered an
operating system. In the smart card context, the use of such small
operating systems mitigates the problem of the portability from one
platform to another but does not offer a standard development for
third parties yet. The use of a software architecture based on an
interpreter like Java Card offers an hardware independent platform
that makes the application development easier for third parties.

For smart cards enabled with Java Card, the Java Card run-time
environment behaves like an operating system running the appli-
cations. The entire system architecture of the smart card can be
sketched into a four layers structure as shown in Fig. 1. The upper
layer is the application layer and consists of all the Java applica-
tions running on the Java Card Virtual Machine. The Java Card
APIs represent a standard interface between the applications and
the Java Card Virtual Machine. In this way, the Java Card Virtual
Machine layer can be considered as an operating system with its
APIs. The most relevant components inside the virtual machine
are the loader, the security manager and the bytecode interpreter.
The role of the latter consists of translating the bytecodes consti-
tuting the Java applications into machine instructions. Below
the Java Card Virtual Machine layer there is the operating system
of the smart card, which offers all the functionalities needed
by the virtual machine. The hardware layer consists of the

Smart Card Opera�ng System

Java Card 
Virtual Machine

Microcontroller
FSM Mem Regs

Interpreter

Installer

Na�ve methods

APIs

System classes

ALU

Java Card applica�ons

Fig. 1. Architecture of a smart card enabled with Java Card.

M. Zilli et al. / Microprocessors and Microsystems 39 (2015) 1076–1086 1077



Download English Version:

https://daneshyari.com/en/article/461336

Download Persian Version:

https://daneshyari.com/article/461336

Daneshyari.com

https://daneshyari.com/en/article/461336
https://daneshyari.com/article/461336
https://daneshyari.com

