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Abstract

This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave
fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable
assumption, we construct various pairs of super- and subsolutions and employ the comparison principle
and the squeezing technique to prove that the equation has a unique nondecreasing traveling wave front (up
to translation), which is monotonically increasing and globally asymptotically stable with phase shift. The
influence of advection on the propagation speed is also considered. Comparing with the previous results,
our results recovers and/or improves a number of existing ones. In particular, these results can be applied to
a reaction advection diffusion equation with nonlocal delayed effect and a diffusion population model with
distributed maturation delay, some new results are obtained.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are concerned with an one space dimensional reaction advection diffusion
equation with nonlocal delay of the form

∂u

∂t
= d�u + B

∂u

∂x
+ g

(
u(x, t),

(
h ∗ S(u)

)
(x, t)

)
, x ∈ R, t > 0, (1.1)

where d > 0, B ∈ R, � is the Laplacian operator on R, h is a nonnegative kernel satisfying

τ∫
0

∞∫
−∞

h(y, s) dy ds = 1,

τ∫
0

∞∫
−∞

|y|h(y, s) dy ds < ∞, (1.2)

and the convolution is defined by

(
h ∗ S(u)

)
(x, t) =

0∫
−τ

∞∫
−∞

h(x − y,−s)S
(
u(y, t + s)

)
dy ds.

For g(u, v) and S(u), we impose the following conditions:

(H1) g ∈ C2([0,1] × [S(0), S(1)],R) and ∂2g(u, v) � 0 for (u, v) ∈ [0,1] × [S(0), S(1)];
S ∈ C2([0,1],R) and S′(u) � 0 for u ∈ [0,1].

(H2) g(0, S(0)) = g(1, S(1)) = 0, ∂1g(0, S(0)) + ∂2g(0, S(0))S′(0) < 0, and ∂1g(1, S(1)) +
∂2g(1, S(1))S′(1) < 0.

Under condition (H2), it is obvious that 0 and 1 are stable equilibria of (1.1). We are interested
in traveling wave solutions that connect the two stable equilibria 0 and 1. Throughout this paper,
a traveling wave solution of (1.1) always refers to a pair (U, c), where U = U(ξ) is a function
on R and c is a constant, such that u(x, t) := U(x − ct) is a solution of (1.1) and

lim
ξ→−∞U(ξ) = 0, lim

ξ→+∞U(ξ) = 1. (1.3)

We call c the traveling wave speed and U the profile of the wave front. If c = 0, we say U is a
standing wave. Moreover, we say a traveling wave U(x − ct) is monotone if U(·) : R → R is a
strictly increasing function.
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