
Closing the gap between speed and configurability of multi-bit fault
emulation environments for security and safety–critical designs

Ralph Nyberg a,⇑, Johann Heyszl a, Dirk Rabe b, Georg Sigl c

a Fraunhofer Institute AISEC, Parkring 4, 85748 Garching, Germany
b Hochschule Emden/Leer, FB Technik, Constantiaplatz 4, 26723 Emden, Germany
c Technische Universität München, EI SEC, Arcisstraße 21, 80333 Munich, Germany

a r t i c l e i n f o

Article history:
Received 13 January 2015
Revised 20 April 2015
Accepted 18 May 2015
Available online 29 May 2015

Keywords:
FPGA-based fault emulation
Multi-bit faults
Performance optimization
Configurability
Result evaluation

a b s t r a c t

Steadily decreasing transistor sizes and new multi beam laser attacks lead to an increasing amount of
multi-bit fault occurrences, e.g., during fault attacks against cryptographic implementations. Therefore,
multi-bit fault injection becomes more important during security and safety verification. Fault injection
techniques which are applicable during the development cycle of a device are based on either software
implementations, e.g. formal methods and simulations, or fault emulation environments in hardware. So
far, simulations provide the best configurability whereas fault emulation environments provide the best
performance in terms of run time. This contribution presents an FPGA-based emulation environment that
combines the advantages of both simulation-based and emulation-based environments. To the best of
our knowledge, we are the first to achieve this. Permanent and transient multi-bit faults are configurable
at run time where the selection of a fault model, the configuration of the injection time and fault duration
is supported without the need for re-synthesizing the design. We propose three measures for perfor-
mance optimization allowing us to support all the fault configuration capabilities at run time without
performance penalty. Experimental results are provided for a hardened 8051-like microprocessor show-
ing that the presented emulation environment reaches the theoretical optimal performance for a wide
range of fault configurations using our proposed optimizations.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Safety–critical circuits, e.g. in the application domain of aero-
space, are exposed to alpha-radiation resulting in faulty behavior.
Security devices, like smart cards, can be broken by deliberately
injected faults which may result in leakage of secrets. Such an
attack was shown by Boneh et al. [1] who exploited fault attacks
to successfully break an RSA cryptoalgorithm. Fault countermea-
sures were introduced to security and safety–critical designs pre-
venting the leakage of secrets and guaranteeing proper circuit
behavior even in harsh environments. For example, fault counter-
measures may detect illegal states and state transitions of finite
state machines, illegal instructions or detect and correct faulty data
on buses by utilizing error correcting codes. These fault counter-
measures have to be evaluated during security and safety verifica-
tion in order to check whether they work properly. Security and
safety verification have to consider fault injection because fault
countermeasures are only supposed to take any action in the

presence of faults. There are different fault injection approaches
which can be performed either post-silicon or pre-silicon. Design
flaws detected post-silicon result in high design costs and prolong
the overall development cycle. Therefore, fault injection
approaches are needed which are applicable on HDL designs or
netlists during the development cycle of a circuit. FPGA-based fault
emulation fulfills this requirement. Furthermore, FPGA-based fault
emulation is four orders of magnitude faster than
simulation-based techniques [2] and the only real-time capable
technique. Contrary to techniques based on simulations or formal
methods, the size of the circuit under verification has no impact
on the performance of FPGA-based fault emulation, except for
the impact on the working frequency.

Physical attacks may affect more than a single gate. Therefore,
fault injection approaches also have to consider multi-bit faults to
model faults as close as possible to reality. Because of the large fault
space, only a limited number of multi-bit faults can be modeled in
feasible time. Relevant faults need to be chosen and configured
individually. But with increasing numbers of faulty bits more data
is needed for fault configurations. This data has to be uploaded over
a communication interface which is the performance limiting factor

http://dx.doi.org/10.1016/j.micpro.2015.05.015
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: ralph.nyberg@aisec.fraunhofer.de (R. Nyberg).

Microprocessors and Microsystems 39 (2015) 1119–1129

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.05.015&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.05.015
mailto:ralph.nyberg@aisec.fraunhofer.de
http://dx.doi.org/10.1016/j.micpro.2015.05.015
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


of fault emulations [3]. In order to remove this limitation and as a
result increase the performance of fault emulation further, autono-
mous fault generation on the FPGA was proposed. Autonomous
fault generation avoids data interchange on the communication
interface in between consecutive fault emulations. The perfor-
mance of autonomous approaches is very close to the actual time
needed by the Circuit Under Verification (CUV) to process the input
which is the theoretical optimal performance. The major drawback
of autonomous approaches is that these only support single-bit
faults or randomized fault generation for multi-bit faults, com-
pletely removing the ability to configure individually chosen faults.
This renders autonomous approaches useless for more complex
multi-bit fault selection strategies, such as finding and configuring
interesting multi-bit faults based on the layout of the CUV [4].
Therefore, in state-of-the-art fault emulation environments either
the ability to configure individually chosen faults is removed or
the performance gets worse for multi-bit faults. A decreasing per-
formance limits the number of faults which can be modeled during
verification even further.

We present an optimized, real-time capable, FPGA-based
multi-bit fault emulation environment which is designed to maxi-
mize the emulation performance while configuration capabilities
remain unaffected. Thus, the fault coverage is only limited by the
size of the multi-bit fault space but neither by the configuration
capabilities nor by the performance of our fault emulation environ-
ment. The fault model, the fault injection time as well as the fault
duration can be configured for each single-bit and multi-bit fault
without the need for re-synthesizing the design. The performance
of the fault emulation environment is optimized by reducing idle
times of the hardware in between consecutively executed fault emu-
lations utilizing three different optimization measures. The pre-
sented optimization measures allow us to provide a user-friendly
configurability at runtime without performance penalty for a wide
range of multi-bit faults. In fact, the optimization measures shift
the bottleneck from the communication interface to the actual time
needed by the Circuit Under Verification (CUV) to process the input.
So far, such a performance was only reached by autonomous fault
generation on the FPGA. In contrast to our previous work [5], we also
propose a new methodology allowing to tolerate differences in the
timing behavior of fault experiments and reducing false positives
for microprocessor-like designs, e.g. smart cards.

This paper is structured as follows. In Section 2 the related work
is discussed. The proposed approach of our fault emulation envi-
ronment is described briefly in Sections 3 and 4 outlines the
details. A new methodology for evaluating fault emulation results
of microprocessor-like designs preventing false positives is pro-
posed in Section 5. Three performance optimization measures are
outlined in Section 6. Performance results are presented in
Section 7. Finally, Section 8 concludes this paper.

2. Related work

There are three different approaches to perform FPGA-based
fault emulation: partial FPGA-reconfiguration, mutant- and
saboteur-based modifications and instrumented circuit techniques
at gate level. The following subsections discuss these approaches
and also discuss necessities for applying the FPGA-based fault
emulation to microprocessor-like designs.

2.1. Partial FPGA-reconfiguration

Exploiting FPGA-reconfiguration for fault grading was the initial
fault emulation approach. Cheng et al. [6,7] proposed compile-time
FPGA reconfiguration to model permanent faults based on the
stuck-at model. Antoni et al. [8] proposed local (also known as

partial or dynamic) real-time FPGA reconfiguration in order to also
enable modeling transient faults. Basically, this methodology
implements a read-modify-write scheme for the frame of the
FPGA configuration RAM in which the fault is modeled. As shown
by the results of a recent publication [9], the time overhead for
modeling a single-bit fault is around 500 cycles (10 ls at 50 MHz
clock). In case of modeling transient faults, the HW execution has
to be interrupted in order to alter the HW behavior. Therefore, this
methodology is considered to be slow and does not provide
real-time capability for transient faults. We do not consider this
approach since our goal is a fast, real-time capable environment
for permanent and transient faults.

2.2. Mutant- and saboteur-based RTL modifications

Mutants and saboteurs enable fault injection capabilities by
HDL modification. Mutants replace the original component RTL
description by a description which is capable of fault injection.
Saboteurs are components which are capable of altering signal
behavior. Saboteurs are fault injection components which extend
an RTL design without replacing the original description [10].
Mutants and saboteurs were originated in the RT level fault simu-
lation domains [11,10]. Misera et al. [12] introduced mutants and
saboteur to SystemC-based simulation and provide a good starting
point for research on simulation-based fault injection techniques.
Leveugle [13] utilized mutant generation for an FPGA-based emu-
lation environment. Baraza et al. [14] present an emulation envi-
ronment capable of placing saboteurs and generating mutants.
Baraza et al. also propose an automatic saboteur placement and
mutant generation in order to gain a better performance and
Grinschgl et al. [15,16] implemented automatic saboteur place-
ment. The advantage of mutant- and saboteur-based emulation
environments is enabling early dependability analysis by using
well known HDL resulting in high flexibility with respect to imple-
menting different fault models. On the other hand, major draw-
backs are the required HW-overhead and synthesis time
overhead [15]. The high HW-overhead prevents enabling fault
injection capability for every possible location at once. Therefore,
multiple synthesis runs would be needed in order to provide a full
coverage slowing down the over all performance drastically. Since
we are aiming for a fast and complete solution for fault grading in
netlists we do not consider this approach.

2.3. Instrumented circuit technique

Contrary to partial FPGA-reconfiguration and mutant- and
saboteur-based RTL modifications, the instrumented circuit tech-
nique only requires a single time-consuming synthesis run and
FPGA-configuration in order to provide complete fault coverage
for multi-bit faults. Furthermore, the instrumented circuit tech-
nique does not require RTL or library modifications, is applicable
for gate level netlists and is fast and real-time capable. Therefore,
we consider this technique. Circuit instrumentation focuses on add-
ing fault injection capability for flip flops (FFs) or combinational
gates within a gate level description. In order to keep the amount
of fault locations for a given Circuit Under Verification (CUV) low,
we consider circuit instrumentation techniques for FFs only.
Dependent on a certain fault model, FFs are extended by additional
logic in order to support fault injection. Either a single FF (single-bit
fault) or a set of FFs (multi-bit fault) is selected to be faulty in a par-
ticular fault experiment and all the other FFs keep their fault free
functionality. Civera et al. [17,18] propose a register for FF selection,
the so called fault mask register, implemented as scan-chain. When
the fault injection time is reached, all faults selected in the fault
mask register are enabled for one clock cycle. For each fault exper-
iment the entire content of the fault mask register is uploaded over

1120 R. Nyberg et al. / Microprocessors and Microsystems 39 (2015) 1119–1129



Download English Version:

https://daneshyari.com/en/article/461339

Download Persian Version:

https://daneshyari.com/article/461339

Daneshyari.com

https://daneshyari.com/en/article/461339
https://daneshyari.com/article/461339
https://daneshyari.com

