

Available online at www.sciencedirect.com

J. Differential Equations 222 (2006) 137-163

Journal of Differential Equations

www.elsevier.com/locate/jde

Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms

Yanheng Ding^{a, *, 1}, Cheng Lee^b

^aInstitute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100080 Beijing, PR China ^bDepartment of Mathematics, National Changhua University of Education, 50057 Taiwan

Received 3 December 2004

Available online 4 May 2005

Abstract

Based on new information concerning strongly indefinite functionals without Palais-Smale conditions, we study existence and multiplicity of solutions of the Schrödinger equation

 $\begin{cases} -\Delta u + V(x)u = g(x, u) & \text{for } x \in \mathbb{R}^N, \\ u(x) \to 0 & \text{as } |x| \to \infty, \end{cases}$

where V and g are periodic with respect to x and 0 lies in a gap of $\sigma(-\Delta+V)$. Supposing g is asymptotically linear as $|u| \to \infty$ and symmetric in u, we obtain infinitely many geometrically distinct solutions. We also consider the situation where g is super linear with mild assumptions different from those studied previously, and establish the existence and multiplicity. © 2005 Elsevier Inc. All rights reserved.

MSC: 58E05; 58E50

Keywords: Schrödinger equation; Indefinite; Asymptotically linear; Infinitely many solutions

^{*} Corresponding author.

E-mail addresses: dingyh@amss.ac.cn (Y. Ding), clee@math.ncue.edu.tw (C. Lee).

¹Supported by NSFC 10421001 and the Special Funds for Major State Basic Research Projects of China, and by the Alexander von Humboldt Foundation of Germany.

1. Introduction and main results

Consider the following Schrödinger equation:

$$\begin{cases} -\Delta u + V(x)u = g(x, u) & \text{for } x \in \mathbb{R}^N, \\ u(x) \to 0 & \text{as } |x| \to \infty, \end{cases}$$
(NS)

where V and g are continuous real functions and satisfy

- (V₀) V(x) is 1-periodic in x_i for j = 1, ..., N such that $0 \notin \sigma(-\Delta + V)$;
- (N_0) g(x, u) is 1-periodic in x_j for j = 1, ..., N, $G(x, u) \ge 0$ and g(x, u) = o(|u|) as $u \to 0$ uniformly in x.

In this paper we are interested in existence of infinitely many geometrically distinct solutions of (NS) when the problem is strongly indefinite, that is, 0 lies in a gap of the spectrum $\sigma(A)$, $A := -\Delta + V$, and g(x, u) is of asymptotically linear growth as $|u| \to \infty$. As far as we are aware there were no such multiplicity results in this situation. We also deal with the case where g(x, u) is of superlinear growth as $|u| \to \infty$ with conditions different from those studied deeply in previous related works.

The Schrödinger equation with periodic potentials and nonlinearities has found a great deal of interest in last years because not only it is important in applications but it provides a good model for developing mathematical methods, see, e.g., [1-3,5, 7,9-11, 13-18,22,23,25] and the references therein. It is known that for periodic potentials $\sigma(A)$ is a union of closed intervals (cf. [20]). There have been many results on existence and multiplicity of solutions of such an equation depending on the location of 0 in $\sigma(A)$, among which we recall the following ones.

Case 1: 0 < inf $\sigma(A)$. In [11] Coti-Zelati and Rabinowitz proved via a mountainpass argument that (NS) has infinitely many solutions provided $g \in C^2(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ and satisfies the superlinear condition: there is $\mu > 2$ such that

$$0 < \mu G(x, u) \leq g(x, u)u \quad \text{for all } x \in \mathbb{R}^N \text{ and } u \in \mathbb{R} \setminus \{0\}$$
(1.1)

and the subcritical condition: there is $s \in (2, 2^*)$ such that

$$|g_u(x,u)| \leqslant c_1 + c_2 |u|^{s-2} \quad \text{for all } (x,u) \in \mathbb{R}^N \times \mathbb{R}.$$

$$(1.2)$$

Here (and in the following) $G(x, u) := \int_0^u g(x, t) dt$, $2^* = \infty$ if $N = 1, 2, 2^* = 2N/(N-2)$ if $N \ge 3$, and c_i denote positive constants. This result was shown recently in [14,23] to remain true for more general nonlinearities, particularly, for asymptotically linear ones.

Case 2: 0 lies in a gap of $\sigma(A)$, that is,

$$\underline{\Lambda} := \sup \left(\sigma(A) \cap (-\infty, 0) \right) < 0 < \Lambda := \inf \left(\sigma(A) \cap (0, \infty) \right).$$
(1.3)

Download English Version:

https://daneshyari.com/en/article/4613433

Download Persian Version:

https://daneshyari.com/article/4613433

Daneshyari.com