

Journal of Differential Equations

J. Differential Equations 232 (2007) 573-622

www.elsevier.com/locate/jde

Kernel sections and uniform attractors of multi-valued semiprocesses [☆]

Yejuan Wang*, Shengfan Zhou

Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, PR China Department of Mathematics, Shanghai University, Shanghai 200444, PR China

> Received 3 May 2006; revised 1 June 2006 Available online 4 August 2006

Abstract

We present the existence of kernel sections (which are all compact, invariant and pullback attracting) of an infinite-dimensional general multi-valued process constructed by the set-valued backward extension of multi-valued semiprocesses. Moreover, the structure of the uniform attractors of a family of multi-valued semiprocesses and the uniform forward attraction of kernel sections of a family of general multi-valued processes are investigated. Finally, we explain our abstract results by considering the mixed wave systems with supercritical exponent and ordinary differential equations.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Multi-valued semiprocess; Kernel section; Uniform attractor; Uniform forward attraction; Nonautonomous wave system with supercritical exponent

1. Introduction

Autonomous set-valued dynamical systems and their attractors have been extensively studied in mathematical literature, especially in the recent years (see, for example, [1,3,6,7,12,14,16, 18,21,22,30] and the references cited therein). However, the nonautonomous multi-valued dynamical systems [4,23], in particular, the nonautonomous multi-valued semidynamical systems are less well understood. In this present work, we are mainly concerned with the asymptotical behavior of multi-valued semiprocesses.

E-mail addresses: wangyj02@st.lzu.edu.cn (Y.J. Wang), sfzhou@mail.shu.edu.cn (S.F. Zhou).

^{*} This work was supported by the National Natural Science Foundation of China under Grant 10471086.

^{*} Corresponding author.

First, we give the sufficient conditions for the existence of kernel sections of an infinite-dimensional general multi-valued process which is generated by the set-valued backward extension of multi-valued semiprocesses. The existence of kernel sections of (single-valued) processes are well known. Related results can be found in [8–12,15,20,24,31,33,34], etc. As far as we know not many results in this line are available in the literature in case of nonautonomous semidynamical systems, even in single-valued case. An important reason, from the point of view of mathematics, may be that the backward extension of the semiprocesses is set-valued in the general sense. Let $\{T(h) \mid h \in \mathbb{R}^+\}$ be a continuous semigroup on a Banach space Σ with norm $\|\cdot\|_{\Sigma}$, and let $\{U_{\sigma}(t,\tau) \mid t \geqslant \tau, \ \tau \in \mathbb{R}^+\}$, $\sigma \in \Sigma$, be a family of multi-valued semiprocesses (MVSP) on a state space X satisfying the following translation identity:

$$U_{T(h)\sigma}(t,\tau) = U_{\sigma}(t+h,\tau+h), \quad \forall h \geqslant 0, \ t \geqslant \tau, \ \tau \geqslant 0. \tag{1.1}$$

In particular, we suppose that X is a Banach space with norm $\|\cdot\|_X$ and $U_{\sigma}(t,\tau)x$ is jointly norm-to-weak upper-semicontinuous in σ and x for any fixed $t \geqslant \tau$, $\tau \in \mathbb{R}^+$, i.e., if $\sigma_n \to \sigma$ and $x_n \to x$, then for any $y_n \in U_{\sigma_n}(t,\tau)x_n$, there exists a $y \in U_{\sigma}(t,\tau)x$, such that $y_n \to y$ (weak convergence), and that the semigroup $\{T(h)\}$ is continuous invariant on a subset Ξ of Σ . We will construct a general multi-valued process (GMVP) (see Section 3 for formal definitions) $\{P_{\sigma}(t,\tau) \mid t \geqslant \tau, \tau \in \mathbb{R}\}$ for each $\sigma \in \Xi$ by the following formula

$$P_{\sigma}(t,\tau) = \begin{cases} U_{\sigma}(t,\tau), & \tau \geqslant 0, \\ \widetilde{U}_{\sigma}(t,\tau), & \tau < 0, \end{cases}$$
 (1.2)

where $\widetilde{U}_{\sigma}(t,\tau) := \{U_{\sigma'}(t-\tau,0) \mid T(|\tau|)\sigma' = \sigma\}$ in X. Let \mathcal{K}_{σ} be the kernel of the GMVP $\{P_{\sigma}(t,\tau)\}$ with $\sigma \in \mathcal{Z}$. The kernel \mathcal{K}_{σ} consists of all bounded complete trajectories of the general multi-valued process, i.e.,

$$\mathcal{K}_{\sigma} = \left\{ u(\cdot) \mid \sup_{t \in (-\infty, +\infty)} \left\| u(t) \right\|_{X} \leqslant C_{u}, \ u(t) \in P_{\sigma}(t, \tau) u(\tau), \ \forall t \geqslant \tau, \ \tau \in \mathbb{R} \right\}.$$

 $\mathcal{K}_{\sigma}(s)$ denotes the kernel section at a time moment $s \in \mathbb{R}$:

$$\mathcal{K}_{\sigma}(s) = \{ u(s) \mid u(\cdot) \in \mathcal{K}_{\sigma} \}, \quad \mathcal{K}_{\sigma}(s) \subseteq X.$$

Here using the technique of Kuratowski measure of noncompactness, we will show under the uniform dissipativeness and the uniform ω -limit compactness of the family of MVSPs $\{U_{\sigma}(t,\tau)\}$, $\sigma \in \Sigma$, that the GMVP $\{P_{\sigma}(t,\tau)\}$ with $\sigma \in \Xi$, which is norm-to-weak upper-semicontinuous on X, has a nonempty kernel; moreover, the kernel sections $\mathcal{K}_{\sigma}(t)$ are all compact, invariant $(P_{\sigma}(t,\tau)\mathcal{K}_{\sigma}(\tau) = \mathcal{K}_{\sigma}(t))$ for all $t \geq \tau$ and all $\tau \in \mathbb{R}$ and pullback attracting, i.e., for any fixed $t \in \mathbb{R}$ and every bounded set $B \subset X$,

$$\lim_{s\to+\infty} H_X^*(P_\sigma(t,t-s)B,\mathcal{K}_\sigma(t)) = 0,$$

where H_X^* denotes the Hausdorff semidistance in X. Furthermore, we give simple and sufficient methods for verifying the uniform ω -limit compactness.

Secondly, we are interested in the structure of the uniform attractors and the uniform forward attraction of the inflated kernel sections. In [12], the structure of the uniform attractors (for the

Download English Version:

https://daneshyari.com/en/article/4613461

Download Persian Version:

https://daneshyari.com/article/4613461

Daneshyari.com