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1. Introduction

In this paper, we are concerned with the following problem:

—Au = AV(z)u = h(z)u™" + pu® ~1 in Q,

u(z) >0 inQ, (1.1)

u(z) =0  on 09,
where 2 is a smooth bounded domain in RN (N > 3), A is the Laplace operator, p > 0 is a parameter,
0< A<= (%)2, and X is the best Hardy constant. 0 < v < 1, 2* = % is the critical Sobolev
exponent. Throughout our paper, we assume that h € C(Q) and h(z) > 0.

Let H (£2) be the completion of C§°(€2) with respect to the norm ([, |Vu|2dz)=. Problem (1.1) is related
to the well-known Hardy inequality [23]:
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/ [ul dx < :/|Vu|2dgu‘7 VaeRY, VueCr9Q).
TR
Q Q
The linear weight V(z) has finitely many singular points and we will impose the following assumptions
on V(z):
(V1) there exist a1, ag, ---,ar € Q such that V(z) € L2 (N\{a1,az2, - ,ax}) and

lim V(z)|z —a;> =1, ie{l,2,--- k}.

T—ra;

Moreover, there exists § > 0, 0 < a, 8 < 24/ X — A such that |a; — a;| > 40 for ¢ # j, B(a;,46) C Q, and
1_|m_ai‘a S |$—ai|2V(£L’) S 1_|1'_ai|,@7 7’:1723 aka

for every x € B(a;,20)\{a1,a2, - ,ar};
(V) there exists a constant C' with 0 < C' < 1 such that

[av@ptds < [1vapis, we Hi®.
Q Q

In Quantum Chemistry, multi-singular potentials stem from molecular systems consisting of k£ nuclei of
unit charge located at a finite number of points a1, as, -+, ar and of k electrons. Coulomb multi-singular
potentials appear in the interactions between the fixed nuclei and the electrons, see Catto et al. [9], Lions [29],
Felli and Terracini [17], Cao and Han [7], Hsu [25]. In addition, problem (1.1) can also act as a model for
many problems coming from astrophysics, cosmology, and differential geometry [4,10,24,26,28].

In recent years, much attention has been paid to elliptic problems involving singular nonlinearity (1.1)
(2,14,19,20,31,32]. In the case of A = 0, by defining 7,, = inf{g > 0 : (1.1) has no weak solution},
Giacomoni et al. [19] showed the existence of two positive solutions of problem (1.1) with h(xz) = 1 for
every u € (0,7),): a saddle point for the energy functional corresponding to (1.1) and a local minimizer.
Furthermore, Sun and Wu [32] used variational arguments based on Nehari’s tool to obtain the dependence
of T, on Q, 2%, v and h(x). Indeed, the authors gave a complete description of a constraint set associated
to the energy functional. Recently, Cong and Han [16] proved that problem (1.1) with g4 =1 and v > 1
admits a solution if and only if there exists ug € Hg () such that [, h(z)uy " dz < co. In the case of A # 0,
we should point out that multiplicity results for positive solutions of problem (1.1) with V(z) = |z|~2 have
been obtained in Chen and Rocha [14].

On the other hand, problem (1.1) with A(xz) = 0 has also been studied by some authors [12,15,13,17,
18,22,25-28]. We would like to mention the results of [12,15,13,18,30], which motivated us to discuss (1.1).
Smets [30] showed that blowing up positive Palais—Smale sequences of the functional corresponding to (1.1)
with V(z) = |z|72 and p = 1 can bear exactly two kind of bubbles. When AV () is replaced by A1 |x| =2+ Aq,
Ferrero and Gazzola [18] have proved that there is one nontrivial solution of (1.1) with g =1 and N > 4
and any A\; > 0 but Ay ¢ oy, (0, is the spectrum of the operator —A — A\1|z|=2 in H}(Q)). Very recently,
we note that Chen and Chen [13] dealt with the existence and multiplicity of positive solutions for the
following semilinear equation with critical exponent and prescribed singularity

—Au — pV(z)u = |u)® 2u+0h(z), Yue H(Q), (1.2)

where V (z) satisfies the conditions (V;) and (Va). The starting point of [13] is the works due to Chen [12]
and Chen et al. [15]. Chen [12] had showed that the problem (1.1) has at least k positive solutions in H}(Q)
under the hypotheses of Theorem 1.1 in Chen and Chen [13]. Moreover, by completing and refining the
analysis performed in Chen [12], Chen—Chen [13] proved 2k positive weak solutions for problem (1.2).
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