
The Journal of Systems and Software 84 (2011) 510–524

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Self-adapting workflow reconfiguration

R. Baird ∗, N. Jorgenson, R. Gamble
Department of Computer Science, University of Tulsa, 800 S. Tucker Drive, Tulsa, OK 74104, USA

a r t i c l e i n f o

Article history:
Received 17 December 2009
Received in revised form
19 September 2010
Accepted 21 October 2010
Available online 18 November 2010

Keywords:
Workflows
Reconfiguration
Web services
User preference
Dynamism

a b s t r a c t

Because web services are highly interoperable, they are capable of providing uniform access to under-
lying technologies, allowing developers to choose between competing services. Workflow languages,
such as BPEL, compose and sequence Web service invocations resulting in meaningful, and sometimes,
repeated tasks. Their prevalence means there may be multiple Web services that perform the same
operation with some better than others depending on the situation. Their potential for being unavail-
able at critical workflow execution times forces a reliance on such redundant services. One remedy for
unavailability and situational awareness constraints is using quality of service factors and user-directed
preferences to assign priorities to workflows and services to perform run-time replacement. In this paper
we describe a novel approach to self-adapting workflow reconfiguration. We discuss the implementa-
tion of our approach embodied by the Next-generation Workflow Toolkit that supports runtime workflow
reconfiguration using BPEL with a commercial workflow engine. A key design feature is the decoupling
of user-directed changes regarding service priority from the actual workflow execution, allowing NeWT
to effectively manage and recover from workflow changes at any time. We evaluate NeWT by comparing
the same example across multiple commercial systems that claim reconfiguration capabilities.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many businesses today have adopted service-oriented archi-
tectures of Web services (WSs) as a development choice for
their composite systems. Workflow languages can compose and
sequence WS invocations to achieve meaningful task results. WSs
often have competing counterpart services with equivalent func-
tionality. Thus, applications that use workflows to invoke WSs have
the potential to be fault-tolerant by incorporating interchange-
able services in workflow compositions. However, the potential
for an adaptive runtime response does not meet reality when WS
providers change service availability, location, or version infor-
mation without warning. Similarly, user-directed changes have
previously been performed only after workflows have reached
quiescence. Often, these changes require rewrites to bring the
workflow up to current standards. The problems increase when
workflows that combine procedural rules and business logic with
specific service choices (Workflow Management Coalition, 2002)
have no inherent mechanisms to take advantage of WS substi-
tutions, should dynamic changes warrant it. Specific workflow
dynamism challenges include

• process failure when expecting a response from a service (inter-
nal error, slow response time, or being offline),

∗ Corresponding author.
E-mail address: robert-baird@utulsa.edu (R. Baird).

• adapting to the best (performing, cost-effective, functionally
matched) service available, and

• integrating replacement services (internally developed services,
competing vendors) at runtime as business rules change.

A better approach is for the workflows to be self-adapting
even as runtime changes and user updates occur. The contribu-
tions of this paper include the development of a novel workflow
management framework that interfaces with a commercial work-
flow engine to allow runtime workflow self-adaptation, while
organizing, controlling and affecting user preferences and service
attributes on workflow configuration. The approach takes user-
directed and environmental status mechanisms that dictate service
priorities, scenarios, and situations that workflows execute under
and decouples them from the actual execution of the workflows.
This decoupling allows anytime changes at the user and environ-
ment level to lead to on-demand execution of workflows. The result
is runtime self-adaptation of workflows, increasing their fault tol-
erance within their domain of execution.

We partition workflow adaptation into two complementary
types: workflow definition reconfiguration and workflow instance
reconfiguration. Workflow definition reconfiguration applies user-
directed rules derived from QoS constraints and environmental
influences to represent situational awareness in workflow speci-
fications to reflect changes in service preferences, priorities, and
availability. As an example, assume that a default workflow defi-
nition is a sequence of services chosen from three abstract service
types. Being of the same type, means that they essentially perform

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.10.026

dx.doi.org/10.1016/j.jss.2010.10.026
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:robert-baird@utulsa.edu
dx.doi.org/10.1016/j.jss.2010.10.026


R. Baird et al. / The Journal of Systems and Software 84 (2011) 510–524 511

Fig. 1. Workflow definition reconfiguration.

the same abstract task. Services A and B are of type 1. Services
C and D are of type 2. Services E and F are of type 3. The right
hand side of Fig. 1 shows the two user directed rules governing the
workflow of services from the three types at time T1. The left hand
side shows the current environmental status with respect to ser-
vice availability and unavailability also at time T1. Given the state
at T1, the current workflow definition appears as Service B (since
A is unavailable), followed by Service C (since C is available) and
Service E (since F is unavailable). At time T2, no new user-directed
rules appear and rules UD1 and UD2 remain. Service A becomes
available, while Service C becomes unavailable, causing the work-
flow to adapt its definition as shown at T2. At time T3, a new user
directive is asserted making Service F a priority over Service E and
since F has become available, the workflow definition adapts to
both the user and environment.

Workflow instance reconfiguration causes executing instances
to adapt to the active workflow definition at runtime if they have
not yet reached the point where the definitional change was made.
This adaption minimizes execution failure while attempting to
produce the result expected given the user and environmental
influences.

We refer to interested persons and service vendors associated
with a domain for workflow development, deployment, and use
as a community of interest (COI) (Renner, 2001). For example, the
Red Cross is part of a COI for services that process and disseminate
information during a natural disaster (Baird and Gamble, 2010).
A COI works to define the needed workflows, the service types,
and the QoS constraints and priorities for governing service use
when multiple services of the same type are available such that dif-
ferent services provide replacements for workflow tasks given an
alternate context or change in environment. Structured discovery
and user input provides one method to support situational aware-
ness (Li et al., 2008; M’Bareck et al., 2007; Rahmani et al., 2008).
Web composition algorithms that examine large sets of services to
generate plans based on different QoS attributes serve as another

source of priority information for the COI (Al-Helal, 2009; Erradi
et al., 2006).

We overview our Next-generation Workflow Toolkit (NeWT)
that relies on the COI and environment to supply workflows with
the directives needed to self-adapt. NeWT provides a framework
for workflow definition and instance reconfiguration by:

• encoding and changing service priorities and preferences during
the lifetime of a workflow,

• defining workflow scenarios to embed reconfiguration opportu-
nities into a default workflow based on situational awareness of
the execution environment,

• workflow definition and instance reconfiguration with automatic
XML-based BPEL PartnerLink management.

We present its underlying design along with select implementa-
tion details. Using a model workflow problem, we demonstrate its
adaptive response against the same workflow used in commercial
products claiming reconfiguration capabilities.

2. Relevant research and applications

Workflow management systems rely on the Universal Descrip-
tion, Discovery and Integration (UDDI) protocol as a central
repository to maintain status information about deployed services
(Oasis, 2004). UDDI assists in managing individual WSs as part
of the environmental influence on workflows. UDDI repositories
store Web Service Definition Language (WSDL) specifications that
aid service discovery and availability determination. However, the
UDDI repository plays no direct role in the reconfiguration process
for workflows using specific WSs.

Service ranking is a prerequisite of workflow specification
and reconfiguration. QoS values provide rankings according to
execution cost, execution time, availability, successful execution
rate, reputation, frequency, and various other indices (Ko et al.,



Download English Version:

https://daneshyari.com/en/article/461373

Download Persian Version:

https://daneshyari.com/article/461373

Daneshyari.com

https://daneshyari.com/en/article/461373
https://daneshyari.com/article/461373
https://daneshyari.com

