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A variational model is introduced for the segmentation problem of thin structures, 
like tubes or thin plates, in an image. The energy is based on the Mumford–Shah 
model with a surfacic term perturbed by a Finsler metric. The formulation in the 
special space of functions with bounded variations is given and, in order to get an 
energy more adapted for numerics, a result of Γ-convergence is proved.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This work is motivated by the segmentation problem of sets strongly elongated in some directions as, for 
instance, tubes or thin plates in an image of dimension n ∈ {2; 3}. In Computer Vision, the Mumford–Shah 
model is one of the most studied [26]. It consists, for a given image g ∈ L∞(Ω), in finding a couple (u, K)
which minimizes the following energy

EMS(u,K) =
∫

Ω\K

(u− g)2dx +
∫

Ω\K

|∇u|2dx + Hn−1(K), (1.1)

where u ∈ W 1,2(Ω \K), K is compact and Hn−1 is the (n −1)-dimensional Hausdorff measure. To minimize 
this energy, K must fit the set of discontinuity of the image and u must represent the regular part of the 
intensity. In order to adapt this model for the particular case of thin and elongated sets, we have introduced 
in [27] a Finsler metric ϕ which must fit the anisotropy of the image. At any point x ∈ Ω, ϕ(x, ·) is a norm 
whose unit ball coincides with the elongation of the sets we want to detect. So, we set

E(u,K) =
∫

Ω\K

(u− g)2dx +
∫

Ω\K

|∇u|2dx +
∫
K

ϕ(x, ν)dHn−1, (1.2)

E-mail address: david.vicente@uni-graz.at.

http://dx.doi.org/10.1016/j.jmaa.2016.10.008
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.10.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:david.vicente@uni-graz.at
http://dx.doi.org/10.1016/j.jmaa.2016.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.10.008&domain=pdf


182 D. Vicente / J. Math. Anal. Appl. 447 (2017) 181–205

where u ∈ W 1,2(Ω \K), K is a compact (n −1)-dimensional submanifold and ν is an unit vector orthogonal 
to K. This kind of model which consists in an energy with a volumic and a surfacic parts also arises in 
Fracture Mechanics Theory ([11,13,23] for example). In this setting, the analysis for the case where ϕ is a 
constant norm has been treated in [21]. To our knowledge, the inhomogeneous case, where ϕ also depends 
on x, has not been done yet.

Since the compact submanifolds of Ω cannot be endowed with a topology which ensures that the direct 
methods apply, a weak formulation of the problem is needed. To do this, De Giorgi and Ambrosio [17]
proposed to set this kind of problem in the space SBV of special functions with bounded variation. Thus, 
setting K = Ju in (1.2) and defining E(u) = E(u, Ju), it gives

E(u) =
∫
Ω

(u− g)2dx +
∫
Ω

|∇u|2dx +
∫
Ju

ϕ(x, νu)dHn−1, (1.3)

where u ∈ SBV(Ω), ∇u is the derivative of u with respect to the Lebesgue measure, Ju is its jump set and 
νu is an unit vector orthogonal to Ju. The abstract theory in SBV has been developed: Ambrosio established 
the existence result [1,2], and regularity for minimizers of this kind of energy has been proved [18,4,5,12]. 
Those results ensure that any minimizer u of the relaxed problem in SBV provides a couple (u, Ju) which 
also minimizes the initial model E .

The numerical approximation for solutions is hard because of the treatment of the jump set Ju. To 
overcome this difficulty, the idea is to perform a variational approximation of the functional E in the sense 
of De Giorgi Γ-convergence [19,25] with Ambrosio–Tortorelli’s approximation.

In order to approximate (1.3), we propose two slightly different families of functionals (Eε)ε and (Ẽε)ε
defined by

Eε(u, z) =
∫
Ω

(u− g)2dx +
∫
Ω

|∇u|2(1 − z2)2dx +
∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx, (1.4)

Ẽε(u, z) =
∫
Ω

(u− g)2dx +
∫
Ω

|∇u|2[ηε + (1 − z2)2]dx +
∫
Ω

(
εϕ(x,∇z)2 + z2

4ε

)
dx. (1.5)

For both versions, the function z takes its values in [0; 1] and plays the role of a control on the gradient of u. 
In the second one, the parameter ηε is infinitesimal with respect to ε. The first functional is directly inspired 
by the initial Ambrosio–Tortorelli’s approximation [6], while the second one was introduced later in [7] and 
it was used in various papers, for example [21,22,15]. Those functionals are more adapted for numerics since 
usual finite element methods can be directly applied. They formally differ by the introduction of the term

ηε

∫
Ω

|∇u|2dx. (1.6)

By this way, Ẽε admits as natural domain of definition the classical Sobolev space (W 1,2(Ω))2. However, 
this term is not strictly necessary in our study because all the results which are proven for Ẽε are also true 
for Eε. For this simplification, the cost to pay is a slightly longer analysis in order to introduce an adapted 
domain for Eε which ensures that its minimization is still a well-posed problem.

The Γ-convergence result when ε → 0+ will be proven for both Eε and Ẽε. However, in the Image 
Processing context, the parameter ε is devoted to be small but fixed. Indeed, for stability of the algorithms, 
ε has to be bounded by below by a positive constant which depends on the size of the grid (see [14]). As in 
practice we can not take the limit ε → 0+, we may choose the first version in order to avoid the additional 
diffusion in the numerics due to the term (1.6).
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