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In this paper, we study a discrete diffusive Lotka–Volterra competition system. It 
is known that this system has traveling wavefronts. We prove that the traveling 
wavefronts are exponentially stable, when the initial perturbation around the 
traveling wavefronts decays exponentially as x → −∞, but can be arbitrarily large 
in other locations. The approach we use here is the comparison principle and the 
weighted energy method.
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1. Introduction

In this paper, we study the following discrete diffusive Lotka–Volterra competition system

{
∂v1
∂t (t, x) = D[v1](t, x) + r1v1(t, x)[1 − v1(t, x) − b1v2(t, x)],
∂v2
∂t (t, x) = D[v2](t, x) + r2v2(t, x)[1 − v2(t, x) − b2v1(t, x)],

(1.1)

where t > 0, x ∈ R, ri, bi are all positive constants, i = 1, 2, and

D[vi](t, x) = vi(t, x + 1) − 2vi(t, x) + vi(t, x− 1).

This model is often used to describe the competing interaction of two species. Here v1(t, x) and v2(t, x)
stand for the populations of two species at time t and location x, respectively. The parameter bi is the 
competition coefficient and ri is the net birth rate of species i, i = 1, 2.
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The system (1.1) is the continuum version of the following lattice dynamical system:
{

∂v1,j(t)
∂t = (v1,j+1(t) − 2v1,j(t) + v1,j−1(t)) + r1v1,j(t)(1 − v1,j(t) − b1v2,j(t)),

∂v2,j(t)
∂t = (v2,j+1(t) − 2v2,j(t) + v2,j−1(t)) + r2v2,j(t)(1 − v2,j(t) − b2v1,j(t)),

(1.2)

where t > 0 and j ∈ Z. Meanwhile, the system (1.1) can be regarded as a spatial discrete version of the 
following reaction–diffusion system:

{
∂v1
∂t (t, x) = ∂2v1

∂x2 (t, x) + r1v1(t, x)[1 − v1(t, x) − b1v2(t, x)],
∂v1
∂t (t, x) = ∂2v2

∂x2 (t, x) + r2v2(t, x)[1 − v2(t, x) − b2v1(t, x)],
(1.3)

where t > 0 and x ∈ R.
It is easy to see that the corresponding diffusionless system of (1.1)–(1.3) is

{
v′1(t) = r1v1(t)[1 − v1(t) − b1v2(t)],
v′2(t) = r2v2(t)[1 − v2(t) − b2v1(t)].

(1.4)

The system (1.4) has four constant equilibria: (0, 0), (0, 1), (1, 0) and coexistence equilibrium ( b1−1
b1b2−1 , 

b2−1
b1b2−1 )

provided that b1b2 �= 1. By a phase plane analysis, we have the following asymptotic behaviors as t → +∞
(see [6]):

(i) (v1, v2) → (1, 0) if 0 < b1 < 1 < b2.
(ii) (v1, v2) → (0, 1) if 0 < b2 < 1 < b1.
(iii) (v1, v2) → one of (0, 1), (1, 0) (depending on the initial condition) if b1, b2 > 1.
(iv) (v1, v2) → ( b1−1

b1b2−1 , 
b2−1

b1b2−1 ) (u and v coexist) if 0 < b1, b2 < 1.

We need to point out that case (ii) can be reduced to the case (i) by exchanging the positions of v1 and v2.
The competition systems (1.2) and (1.3) have been studied quite extensively for past years, see, for 

example, [2–7,12,13,21] and the references cited therein. The traveling wave solution is among the central 
problems, since it can describe the propagation or invasion of species in population dynamics [5,6]. In 
mathematics, traveling wave solution of (1.2) (or (1.3)) is a special solution (v1,j(t), v2,j(t)) = (ϕ1(ξ), ϕ2(ξ))
with c > 0, ξ := j + ct, (or (v1(t, x), v2(t, x)) = (ϕ1(ξ), ϕ2(ξ)) with c > 0, ξ := x + ct), where c is the wave 
speed, ϕ1 and ϕ2 are called wave profiles. If ϕ1 and ϕ2 are monotone, then (ϕ1, ϕ2) is called a traveling 
wavefront. For the continuum problem (1.3), we refer the readers to the work of Hosono [9,10], Kan-on [12], 
Kan-on and Fang [13] and Volpert et al. [23]. For the lattice system (1.2), Guo and Wu [5] proved that there 
is a positive constant (the minimal wave speed) such that a traveling wavefront connecting (0, 1) and (1, 0)
of (1.2) exists if and only if its speed is above this minimal wave speed. They also showed that any wave 
profile of (1.2) is strictly monotone and unique up to translations. It is not hard to see that (1.1) and (1.2)
take the same wave profile system, i.e.,

{
cϕ′

1(ξ) = D[ϕ1](ξ) + r1ϕ1(ξ)[1 − ϕ1(ξ) − b1ϕ2(ξ)],
cϕ′

2(ξ) = D[ϕ2](ξ) + r2ϕ2(ξ)[1 − ϕ2(ξ) − b2ϕ1(ξ)],

where D[ϕ](ξ) := ϕ(ξ + 1) − 2ϕ(ξ) + ϕ(ξ − 1). Henceforth, the existence of wavefront of (1.1) connecting 
(0, 1) and (1, 0) with positive speed is assured. The purpose of this article is to establish the stability of 
traveling wavefronts of (1.1).

The stability of traveling wavefronts for reaction–diffusion equations with monostable nonlinearity has 
been extensively studied, see [1,15,17–20,24–27] and reference therein. To our knowledge, there are main 
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