The eigenvalue problem and infinitely many sign-changing solutions for an elliptic equation with critical Hardy constant ${ }^{* *}$

Shuying Tian
School of Science, Wuhan University of Technology, Wuhan, PR China

A R T I C L E I N F O

Article history:

Received 9 August 2016
Available online 17 October 2016
Submitted by M. Musso

Keywords:

Lower bounds of eigenvalues
Critical Hardy constant
Infinitely many sign-changing
solutions

Abstract

By Li-Yau's idea and a more precise Hardy's inequality, we obtain a new lower bound of eigenvalues for an elliptic equation with critical Hardy constant. Then using the lower bounds, we prove that there are infinitely many sign-changing solutions for a class of elliptic equation with critical Hardy constant which extends the results in Schechter and Zou (2005) [9] to the critical Hardy constant case.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

We first consider the lower bounds of eigenvalues for the following eigenvalue problem:

$$
\begin{cases}-\triangle u-\frac{(n-2)^{2}}{4} \frac{u}{|x|^{2}}=\lambda u, & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ is an open bounded domain with smooth boundary containing the origin.
By the classical Hardy's inequality in [7]:

$$
\int_{\Omega}|\nabla u|^{2} d x \geq \frac{(n-2)^{2}}{4} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x
$$

we know that the operator $-\triangle-\gamma /|x|^{2}$ is a positive operator and equivalent to $-\triangle$ when $0<\gamma<(n-2)^{2} / 4$. Also, in [9] the authors established the lower bounds of eigenvalues as follows:

$$
\lambda_{k} \geq C_{0} k^{2 / n}, \text { for some } C_{0}>0 \text { and } k \geq 1
$$

[^0]In fact, we can also prove that $\lambda_{k} \leq C_{1} k^{2 / n}$. However, the operator $-\triangle-(n-2)^{2} /\left(4|x|^{2}\right)$ is not equivalent to $-\Delta$ any more. Inspired by Li-Yau's idea in [8] and a more precise Hardy's inequality in [1], we have

Theorem 1.1. Let λ_{k} be the k-th eigenvalue of (1.1), then

$$
\lambda_{k} \geq C_{2} k^{\frac{2}{n}-\frac{2-q}{q}}
$$

for any $k \geq 1$ and $q \in\left(\frac{2 n}{n+2}, 2\right)$, where C_{2} is the constant in (2.8) below.
Remark 1.1. The results in Theorem 1.1 show that the power of lower bounds of eigenvalues to (1.1) can be close to $2 / n$ arbitrarily by taking q suitably.

Next, we concern with the multiplicity of sign-changing solution for the following nonlinear elliptic equation with critical Hardy constant,

$$
\begin{cases}-\triangle u-\frac{(n-2)^{2}}{4} \frac{u}{|x|^{2}}=a(x, u), & \text { in } \Omega \tag{1.2}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ is an open bounded domain with smooth boundary containing the origin.
Lots of mathematicians have researched the elliptic equation with Hardy potential

$$
\begin{cases}-\triangle u-\gamma \frac{u}{|x|^{2}}=a(x, u), & \text { in } \Omega \tag{1.3}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

For the case $0<\gamma<(n-2)^{2} / 4$, by the asymptotic behavior of the eigenfunctions, Cao-Han [2] and Cao-Peng [3] obtained the existence of multiple solutions and sign-changing solution when $a(x, u)$ is the critical nonlinear term and $\gamma<\bar{\gamma}$, where $\bar{\gamma}$ is a fixed positive number which is smaller than $(n-2)^{2} / 4$. Later, by using the lower bounds of eigenvalues, Schechter-Zou [9] proved that there are infinitely many sign-changing solutions under some conditions on $a(x, u)$, where $a(x, u)$ is subcritical and non-symmetry.

Here we assume that $a(x, u)=f(x, u)+g(x, u)$ satisfies
(H-1) $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with subcritical growth:

$$
|f(x, u)| \leq c\left(1+|u|^{p-1}\right), \quad \text { for all } u \in \mathbb{R} \text { and a.e. } x \in \Omega
$$

where $p \in\left(2,2^{*}\right), 2^{*}=2 n /(n-2)$. Moreover, $f(x, u)=o(|u|)$ as $|u| \rightarrow 0$ uniformly in $x \in \Omega$; and $f(x, u) u \geq 0$ for all $u \in \mathbb{R}$ and a.e. $x \in \Omega$.
(H-2) There exist $\mu>2$ and $R>0$ such that

$$
0<\mu F(x, u) \leq u f(x, u), \quad x \in \Omega,|u| \geq R,
$$

where $F(x, u)=\int_{0}^{u} f(x, v) d v$.
(H-3) $f(x, u)$ is odd in u, which is $f(x,-u)=-f(x, u)$.
$(\mathrm{H}-4) g: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. There exists $\sigma<\min \{\mu / 2, p\}$ such that

$$
|g(x, u)| \leq c\left(1+|u|^{\sigma}\right), \quad \text { for all } u \in \mathbb{R} \text { and a.e. } x \in \Omega .
$$

Moreover, $g(x, u)=o(|u|)$ as $|u| \rightarrow 0$ uniformly in $x \in \Omega$; and $g(x, u) u>0$ for a.e. $x \in \Omega$ and all $u \in \mathbb{R} \backslash\{0\}$.
In [9], if $0<\gamma<(n-2)^{2} / 4$, the authors proved that the following equation with non-symmetry term

https://daneshyari.com/en/article/4613740

Download Persian Version
https://daneshyari.com/article/4613740

Daneshyari.com

[^0]: मर This work is supported by National Natural Science Foundation of China (Grant No. 11601402) and Independent Innovation Foundation of Wuhan University of Technology (Grant Nos. 163114002, 2016IA005).

 E-mail address: sytian@whut.edu.cn.
 http://dx.doi.org/10.1016/j.jmaa.2016.10.022
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

