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In this paper, certain mixed special polynomial families associated with Appell 
sequences are introduced and their properties are established. Further, operational 
rules providing connections between these families and known special polynomials 
are established, which are used to derive the identities and results for the members 
of these new families. Determinantal definitions of the polynomials associated with 
Appell family are also derived. The approach presented is general.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The concepts of the monomiality principle and operational techniques are used to combine the special 
polynomials to find the mixed special polynomials. These polynomials have many applications in different 
branches of mathematics. Recently, the Laguerre–Gould Hopper polynomials (LGHP) LH(m,r)

n (x, y, z) are 
introduced in [36] which are defined by means of the generating function

C0(−xtm) exp(yt + ztr) =
∞∑

n=0
LH

(m,r)
n (x, y, z) t

n

n! , (1.1)

where C0(x) denotes the Bessel–Tricomi function of order zero. The nth-order Bessel–Tricomi functions 
Cn(x) are specified by means of the generating function
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exp
(
t− x

t

)
=

∞∑
n=0

Cn(x)tn, (1.2)

for t �= 0 and for all finite x and are defined by the following series [14, p. 150]:

Cn(x) = x−n
2 Jn(2

√
x) =

∞∑
k=0

(−1)k xk

k! (n + k)! , n = 0, 1, 2, . . . , (1.3)

with Jn(x) being the ordinary cylindrical Bessel function of the first kind [2]. The 0th-order Bessel–Tricomi 
function C0(x) is also given by the following operational definition:

C0(αx) = exp
(
−αD−1

x

)
{1}, (1.4)

where D−1
x denotes the inverse derivative operator and

D−n
x {1} = xn

n! .

The series definition for the LGHP LH
(m,r)
n (x, y, z) is given as [36]:

LH
(m,r)
n (x, y, z) = n!

[nr ]∑
k=0

zkmLn−rk(x, y)
k!(n− rk)! , (1.5)

where mLn(x, y) denotes the 2-variable generalized Laguerre polynomials (2VGLP), which are defined by 
the following series [18, p. 213 (27)]:

mLn(x, y) = n!
[ n
m ]∑

r=0

xryn−mr

(r!)2(n−mr)! . (1.6)

In view of definition (1.6), the LGHP are defined as [36, p. 9933(2.7)]:

LH
(m,r)
n (x, y, z) = n!

rk+ml≤n∑
k,l=0

zkxlyn−rk−ml

k!(l!)2(n− rk −ml)! . (1.7)

The LGHP LH
(m,r)
n (x, y, z) are also defined as [36]:

LH
(m,r)
n (x, y, z) = n!

[ n
m ]∑

k=0

xkH
(r)
n−mk(y, z)

(k!)2(n−mk)! , (1.8)

where H(r)
n (y, z) are the Gould Hopper polynomials (GHP) [34] defined by

H(r)
n (y, z) = n!

[nr ]∑
k=0

zkyn−rk

k!(n− rk)! . (1.9)

The operational correspondence between the LGHP LH
(m,r)
n (x, y, z) and the generalized Laguerre Poly-

nomials mLn(x, y) is [36]:
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