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We deal with complete submanifolds Mn having constant positive scalar curvature 
and immersed with parallel normalized mean curvature vector field in a Riemannian 
space form Qn+p

c of constant sectional curvature c ∈ {1, 0, −1}. In this setting, we 
show that such a submanifold Mn must be either totally umbilical or isometric to a 
Clifford torus S1 (√1 − r2

)
× Sn−1(r), when c = 1, a circular cylinder R × Sn−1(r), 

when c = 0, or a hyperbolic cylinder H1 (−√
1 + r2

)
× Sn−1(r), when c = −1. This 

characterization theorem corresponds to a natural improvement of previous ones 
due to Alías, García-Martínez and Rigoli [2], Cheng [4] and Guo and Li [6].

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many authors have approached the problem of characterizing hypersurfaces immersed with constant 
mean curvature or with constant scalar curvature in a Riemannian space form Qn+1

c of constant sectional 
curvature c. For instance, in the seminal work [5], Cheng and Yau introduced a new self-adjoint differential 
operator � acting on smooth functions defined on Riemannian manifolds. As a by-product of such approach 
they were able to classify closed hypersurfaces Mn with constant normalized scalar curvature R satisfying 
R ≥ c and nonnegative sectional curvature immersed in Qn+1

c . Later on, Li [8] extended the results due to 
Cheng and Yau [5] in terms of the squared norm of the second fundamental form of the hypersurface Mn.

In [3], Brasil Jr., Colares and Palmas used the generalized maximum principle of Omori [9] and Yau [13]
to characterize complete hypersurfaces with constant scalar curvature in Sn+1. In [1], by applying a weak 
Omori–Yau maximum principle due to Pigola, Rigoli, Setti [10], Alías and García-Martínez studied the 
behavior of the scalar curvature R of a complete hypersurface immersed with constant mean curvature into 
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a real space form Qn+1
c , deriving a sharp estimate for the infimum of R. Afterwards, Alías, García-Martínez 

and Rigoli [2] obtained another suitable weak maximum principle for complete hypersurfaces with constant 
scalar curvature in Qn+1

c , and gave some applications of it in order to estimate the norm of the traceless 
part of its second fundamental form. In particular, they extended the main theorem of [3] for the context 
of Qn+1

c .
Considering higher codimension, Cheng [4] showed that the totally umbilical sphere Sn(r), totally geodesic 

Euclidean space Rn and generalized cylinder R ×Sn−1(r) are the only n-dimensional complete submanifolds 
with constant scalar curvature and parallel normalized mean curvature vector field (that is, the normalized 
mean curvature vector field is parallel as a section of the normal bundle) in the Euclidean space Rn+p, 
which satisfy a suitable constrain on the norm of the second fundamental form. Later on, Guo and Li [6]
generalized the results of [8] showing that the only closed submanifolds in the unit sphere Sn+p with 
constant scalar curvature, parallel normalized mean curvature vector field and whose second fundamental 
form satisfies some appropriate boundedness are the totally umbilical sphere Sn(r) and the Clifford torus 
S1(

√
1 − r2) × Sn−1(r).

Motivated by these works, we deal with complete submanifolds Mn having constant positive scalar 
curvature and immersed with parallel normalized mean curvature vector field in a Riemannian space form 
Qn+p

c of constant sectional curvature c ∈ {1, 0, −1}. In this setting, we establish a suitable Simons type 
formula (cf. Proposition 3.1) and an Omori type maximum principle for the square operator (cf. Lemma 4.5) 
in order to obtain the following characterization result:

Theorem 1.1. Let Mn be a complete submanifold immersed with parallel normalized mean curvature vector 
field in a Riemannian space form Qn+p

c (c ∈ {1, 0, −1} and n ≥ 4), with constant normalized scalar curvature 
R ≥ 1, when c = 1, and R > 0, when c ∈ {0, −1}. Then

i. either |Φ| ≡ 0 and Mn is totally umbilical,
ii. or

sup
M

|Φ|2 ≥ αn,c(R) = n(n− 1)R2

(n− 2)(nR− (n− 2)c) .

Moreover, assuming in addition that R > 1 when c = 1, the equality supM |Φ|2 = αn,c(R) holds and this 
supremum is attained at some point of Mn if, and only if, Mn is isometric to a
(a) Clifford torus S1 (√1 − r2

)
× Sn−1(r) ↪→ Sn+1 ↪→ Sn+p, when c = 1,

(b) circular cylinder R × Sn−1(r) ↪→ Rn+1 ↪→ Rn+p, when c = 0,
(c) hyperbolic cylinder H1 (−√

1 + r2
)
× Sn−1(r) ↪→ Hn+1 ↪→ Hn+p, when c = −1,

where r =
√

n− 2
nR

.

Here, Φ stands for the traceless part of the second fundamental form of the submanifold Mn. We point 
out that Theorem 1.1 is a natural extension of Theorems 1 and 2 in [2] for higher codimension and, as well 
as, it can be regarded as a suitable improvement of the main results of [4] and [6]. The proof of Theorem 1.1
is given in Section 5.

2. Preliminaries

Let Mn be an n-dimensional connected submanifold immersed in a space form Qn+p
c , with constant 

sectional curvature c. We will make use of the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + p.
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