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1. Introduction

The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex
function f : [a,b] — R. The function f : [a,b] C R — R, is said to be convex if the following inequality holds

fQz+ (1 =Ny) <Af(@)+ (1 =N f(y),

for all 2,y € [a,b] and A € [0, 1]. We say that f is concave if (—f) is convex.
Let f : I — R be a convex function defined on the interval I of real numbers and a,b € I with a < b,
then
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which is known as the Hermite-Hadamard inequality [11]. In [9], Fejér developed the weighted generalization
of the Hermite-Hadamard inequality given below.

Theorem 1.1. Let f : [a,b] — R be a convex function. Then the inequality
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holds, where g : [a,b] = R is non-negative, integrable and symmetric to (a +b)/2.

Since then, many researches generalized and extended the two inequalities (1) and (2). For related re-
sults, for example, see [8,22-25,32,40-42] and the references therein. In [37], Sarikaya et al. generalized
the Hermite-Hadamard type inequalities via Riemann-Liouville fractional integrals. Then in [12], Iscan
extended Sarikaya’s results to Hermite-Hadamard-Fejér type inequalities for fractional integrals. Further
results involving the two inequalities in question with applications to fractional integrals can be found, for
example, in [6,13,37,38] and the references therein.

In [15], the second author introduces an Erdélyi-Kober type fractional integral operator and uses that inte-
gral to define a new fractional derivative in [16], which generalizes the Riemann—Liouville and the Hadamard
fractional derivatives to a single form and argued that it is not possible to derive the Hadamard equivalence
operators from the corresponding Erdélyi—-Kober type operators, thus making the new derivative more ap-
propriate for modeling certain phenomena which undergo bifurcation-like behaviors. For further properties
of the Erdélyi-Kober operators, the interested reader is refereed to, for example, [20,21,36]. According to
the literature, the newly defined fractional operators are now known as the Katugampola fractional integral
and derivatives, respectively [43]. For consistency, we use the same name for those operators in question. It
can be shown that the derivatives in question satisfy the fractional derivative criteria (test) given in [19,31].
These operators have applications in fields such as in probability theory [1], theory of inequalities [32,41,44],
variational principle [2], numerical analysis [3], and Langevin equations [39]. A Caputo-type modification of
the operator in question can be found in [4]. The interested reader is referred, for example, to [5,10,18,26-30,
34,35] for further results on these and similar operators. The Mellin transforms of the generalized fractional
integrals and derivatives defined in [15] and [16], respectively, are given in [17]. The same reference also
studies a class of sequences that are closely related to the Stirling numbers of the 2nd kind. The p-Laplace
and p-Fourier transforms of the Katugampola fractional operators are given in [7].

In the following, we will give some necessary definitions and preliminary results which are used and
referred to throughout this paper.

Definition 1.2 (/33/). Let o > 0 with n —1 < o < m, n € N, and a < & < b. The left- and right-side
Riemann-Liouville fractional integrals of order @ of a function f are given by

x
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respectively, where T'(+) is the Euler’s gamma function defined by

I(z) = /t‘c_le—t dt.
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