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In this paper we obtain the Hermite–Hadamard and Hermite–Hadamard–Fejér 
type inequalities for fractional integrals which generalize the two familiar fractional 
integrals namely, the Riemann–Liouville and the Hadamard fractional integrals into 
a single form. We prove that, in most cases, we obtain the Riemann–Liouville and the 
Hadamard equivalence just by taking limits when a parameter ρ → 1 and ρ → 0+, 
respectively.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The classical Hermite–Hadamard inequality provides estimates of the mean value of a continuous convex 
function f : [a, b] → R. The function f : [a, b] ⊂ R → R, is said to be convex if the following inequality holds

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

for all x, y ∈ [a, b] and λ ∈ [0, 1]. We say that f is concave if (−f) is convex.
Let f : I → R be a convex function defined on the interval I of real numbers and a, b ∈ I with a < b, 

then
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f

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)
2 , (1)

which is known as the Hermite–Hadamard inequality [11]. In [9], Fejér developed the weighted generalization 
of the Hermite–Hadamard inequality given below.

Theorem 1.1. Let f : [a, b] → R be a convex function. Then the inequality

f

(
a + b

2

) b∫
a

g(x)dx ≤ 1
b− a

b∫
a

f(x)g(x)dx ≤ f(a) + f(b)
2

b∫
a

g(x)dx (2)

holds, where g : [a, b] → R is non-negative, integrable and symmetric to (a + b)/2.

Since then, many researches generalized and extended the two inequalities (1) and (2). For related re-
sults, for example, see [8,22–25,32,40–42] and the references therein. In [37], Sarikaya et al. generalized 
the Hermite–Hadamard type inequalities via Riemann–Liouville fractional integrals. Then in [12], İşcan 
extended Sarikaya’s results to Hermite–Hadamard–Fejér type inequalities for fractional integrals. Further 
results involving the two inequalities in question with applications to fractional integrals can be found, for 
example, in [6,13,37,38] and the references therein.

In [15], the second author introduces an Erdélyi–Kober type fractional integral operator and uses that inte-
gral to define a new fractional derivative in [16], which generalizes the Riemann–Liouville and the Hadamard 
fractional derivatives to a single form and argued that it is not possible to derive the Hadamard equivalence 
operators from the corresponding Erdélyi–Kober type operators, thus making the new derivative more ap-
propriate for modeling certain phenomena which undergo bifurcation-like behaviors. For further properties 
of the Erdélyi–Kober operators, the interested reader is refereed to, for example, [20,21,36]. According to 
the literature, the newly defined fractional operators are now known as the Katugampola fractional integral
and derivatives, respectively [43]. For consistency, we use the same name for those operators in question. It 
can be shown that the derivatives in question satisfy the fractional derivative criteria (test) given in [19,31]. 
These operators have applications in fields such as in probability theory [1], theory of inequalities [32,41,44], 
variational principle [2], numerical analysis [3], and Langevin equations [39]. A Caputo-type modification of 
the operator in question can be found in [4]. The interested reader is referred, for example, to [5,10,18,26–30,
34,35] for further results on these and similar operators. The Mellin transforms of the generalized fractional 
integrals and derivatives defined in [15] and [16], respectively, are given in [17]. The same reference also 
studies a class of sequences that are closely related to the Stirling numbers of the 2nd kind. The ρ-Laplace 
and ρ-Fourier transforms of the Katugampola fractional operators are given in [7].

In the following, we will give some necessary definitions and preliminary results which are used and 
referred to throughout this paper.

Definition 1.2 ([33]). Let α > 0 with n − 1 < α ≤ n, n ∈ N, and a < x < b. The left- and right-side 
Riemann–Liouville fractional integrals of order α of a function f are given by

Jα
a+f(x) = 1

Γ(α)

x∫
a

(x− t)α−1f(t) dt and Jα
b−f(x) = 1

Γ(α)

b∫
x

(t− x)α−1f(t) dt

respectively, where Γ(·) is the Euler’s gamma function defined by

Γ(x) =
∞∫
0

tx−1e−t dt.
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