

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Heat content for convolution semigroups

Wojciech Cygan ^{a,1}, Tomasz Grzywny ^{b,*,2}

^a Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
 ^b Wydział Matematyki, Politechnika Wrocławska, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

ARTICLE INFO

Article history: Received 29 June 2016 Available online 28 September 2016 Submitted by U. Stadtmueller

Keywords:
Asymptotic behaviour
Characteristic exponent
Heat content
Isotropic Lévy process
Perimeter
Regular variation

ABSTRACT

Let $\mathbf{X} = \{X_t\}_{t \geq 0}$ be a Lévy process in \mathbb{R}^d and Ω be an open subset of \mathbb{R}^d with finite Lebesgue measure. In this article we consider the quantity $H(t) = \int_{\Omega} \mathbb{P}_x(X_t \in \Omega^c) \, \mathrm{d}x$ related to \mathbf{X} which is called the heat content. We study its asymptotic behaviour as t goes to zero for isotropic Lévy processes under some mild assumptions on the characteristic exponent. We also treat the class of Lévy processes with finite variation in full generality.

 $\ \, \odot$ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbf{X} = \{X_t\}_{t\geq 0}$ be a Lévy process in \mathbb{R}^d with the distribution \mathbb{P} such that $X_0 = 0$. We denote by $p_t(\mathrm{d}x)$ the distribution of the random variable X_t and we use the standard notation \mathbb{P}_x for the distribution related to the process \mathbf{X} started at $x \in \mathbb{R}^d$. The characteristic exponent $\psi(x)$, $x \in \mathbb{R}^d$, of the process \mathbf{X} is given by the formula

$$\psi(x) = \langle x, Ax \rangle - i\langle x, \gamma \rangle - \int_{\mathbb{R}^d} \left(e^{i\langle x, y \rangle} - 1 - i\langle x, y \rangle \mathbf{1}_{\{\|y\| \le 1\}} \right) \nu(\mathrm{d}y), \tag{1}$$

where A is a symmetric non-negative definite $d \times d$ matrix, $\gamma \in \mathbb{R}^d$ and ν is a Lévy measure, that is

$$\nu(\lbrace 0\rbrace) = 0 \quad \text{and} \quad \int_{\mathbb{R}^d} \left(1 \wedge \|y\|^2\right) \, \nu(\mathrm{d}y) < \infty. \tag{2}$$

^{*} Corresponding author.

E-mail addresses: wojciech.cygan@uwr.edu.pl (W. Cygan), tomasz.grzywny@pwr.edu.pl (T. Grzywny).

¹ W. Cygan was supported by National Science Centre (Poland): grant DEC-2013/11/N/ST1/03605 and by Austrian Science Fund project FWF P24028.

² T. Grzywny was partially supported by National Science Centre (Poland): grant 2015/17/B/ST1/01043.

Let Ω and Ω_0 be two non-empty subsets of \mathbb{R}^d such that Ω is open and its Lebesgue measure $|\Omega|$ is finite. We consider the following quantity associated with the process \mathbf{X} ,

$$H_{\Omega,\Omega_0}(t) = \int_{\Omega} \mathbb{P}_x(X_t \in \Omega_0) dx = \int_{\Omega} \int_{\Omega_0 - x} p_t(dy) dx$$

and we use the notation

$$H_{\Omega}(t) = H_{\Omega,\Omega}(t)$$
 and $H(t) = H_{\Omega,\Omega^c}(t)$. (3)

The main goal of the present article is to study the asymptotic behaviour of $H_{\Omega}(t)$ as t goes to zero. We observe that

$$H_{\Omega}(t) = |\Omega| - H(t),$$

and thus it suffices to work with the function H(t). The function $u(t,x) = \int_{\Omega-x} p_t(\mathrm{d}y)$ is the weak solution of the initial value problem

$$\frac{\partial}{\partial t}u(t,x) = -\mathcal{L}u(t,x), \quad t > 0, \ x \in \mathbb{R}^d,$$
$$u(0,x) = \mathbf{1}_{\Omega}(x),$$

where \mathcal{L} is the infinitesimal generator of the process \mathbf{X} , see [17, Section 31]. Therefore, $H_{\Omega}(t)$ can be interpreted as the amount of heat in Ω if its initial temperature is one whereas the initial temperature of Ω^c is zero. In paper [19], the author calls the quantity $H_{\Omega}(t)$ heat content and we will use the same terminology. There are a lot of articles where bounds and asymptotic behaviour of the heat content related to Brownian motion, either on \mathbb{R}^d or on compact manifolds, were studied, see [19,21,22,20,18,23]. Recently Acuña Valverde [2] investigated the heat content for isotropic stable processes in \mathbb{R}^d , see also [1] and [3]. In this paper we study the small time behaviour of the heat content associated with rather general Lévy processes in \mathbb{R}^d .

Before we state our results we recall the notion of perimeter. Following [4, Section 3.3], for any measurable set³ $\Omega \subset \mathbb{R}^d$ we define its perimeter $Per(\Omega)$ as

$$\operatorname{Per}(\Omega) = \sup \left\{ \int_{\mathbb{R}^d} \mathbf{1}_{\Omega}(x) \operatorname{div} \phi(x) \, \mathrm{d}x : \, \phi \in C_c^1(\mathbb{R}^d, \mathbb{R}^d), \, \|\phi\|_{\infty} \le 1 \right\}. \tag{4}$$

We say that Ω is of finite perimeter if $\operatorname{Per}(\Omega) < \infty$. It was shown in [13–15] that if Ω is an open set in \mathbb{R}^d with finite Lebesgue measure and of finite perimeter then

$$Per(\Omega) = \pi^{1/2} \lim_{t \to 0} t^{-1/2} \int \int_{\Omega} \int_{\Omega^c} p_t^{(2)}(x, y) \, dy \, dx,$$

where

$$p_t^{(2)}(x,y) = (4\pi t)^{-d/2} e^{-\|x-y\|^2/4t}$$

is the transition density of the Brownian motion B_t in \mathbb{R}^d . We also notice that for a non-empty and open set Ω , $\operatorname{Per}(\Omega) > 0$.

³ All sets in the paper are assumed to be Lebesgue measurable.

Download English Version:

https://daneshyari.com/en/article/4613774

Download Persian Version:

https://daneshyari.com/article/4613774

<u>Daneshyari.com</u>