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1. Introduction

Let X = {X;}+>0 be a Lévy process in R? with the distribution P such that Xo = 0. We denote by p;(dx)
the distribution of the random variable X; and we use the standard notation P, for the distribution related
to the process X started at z € R%. The characteristic exponent 1 (z), x € R%, of the process X is given by
the formula

0la) = (o, A) = i) = [ (69 = 1= il )1 gen) vidy) 1)
Rd

where A is a symmetric non-negative definite d x d matrix, v € R? and v is a Lévy measure, that is

V(o) =0 and [ (1A 1) vidy) < oc, 2)
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Let  and Qg be two non-empty subsets of R? such that € is open and its Lebesgue measure || is finite.
We consider the following quantity associated with the process X,

o =[x e00e= | [ i

QQ()CE

and we use the notation
Hg(t) = HQJ](t) and H(t) = HQ’QC (t) (3)

The main goal of the present article is to study the asymptotic behaviour of Hq(t) as ¢ goes to zero. We
observe that

Ho(t) = |Qf = H(1),

and thus it suffices to work with the function H(t). The function u(t,z) = [, _ p¢(dy) is the weak solution
of the initial value problem

%u(t,x) = —Lu(t,z), t>0 2z€R%
u(0,2) = 1g(x),
where £ is the infinitesimal generator of the process X, see [17, Section 31]. Therefore, Hq(t) can be
interpreted as the amount of heat in 2 if its initial temperature is one whereas the initial temperature
of Q¢ is zero. In paper [19], the author calls the quantity Hq(t) heat content and we will use the same
terminology. There are a lot of articles where bounds and asymptotic behaviour of the heat content related
to Brownian motion, either on R? or on compact manifolds, were studied, see [19,21,22,20,18,23]. Recently
Acuiia Valverde [2] investigated the heat content for isotropic stable processes in R, see also [1] and [3].
In this paper we study the small time behaviour of the heat content associated with rather general Lévy
processes in R

Before we state our results we recall the notion of perimeter. Following [4, Section 3.3], for any measurable
set? Q C R? we define its perimeter Per((2) as

Per(Q2) = sup /lg(z)div p(x)dx: ¢ € CHRLRY), ||¢]l ., <1p. (4)

Rd

We say that € is of finite perimeter if Per(2) < oc. It was shown in [13-15] that if  is an open set in R¢
with finite Lebesgue measure and of finite perimeter then

Per(Q) = 7'/? hmt_l/Q// (2 ) (z,y) dy dz,
Q Qe

where
p® (2, y) = (dmt)~ Y2~ o—vl?/4t

is the transition density of the Brownian motion B; in R%. We also notice that for a non-empty and open
set Q, Per(Q2) > 0.

3 All sets in the paper are assumed to be Lebesgue measurable.
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