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An Rδ-structure of solution sets to some classes of impulsive differential inclusions 
with variable impulse times on the half-line is shown. Sufficient conditions on 
barriers are discussed in detail. They imply two different techniques: the inverse 
limit method and the one based on a definition of Rδ-sets and used in a new suitable 
Fréchet function space.
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1. Introduction

The goal of the paper is to study a topological structure of the set of solutions to the following impulsive 
multivalued problem⎧⎪⎨

⎪⎩
ẏ(t) ∈ F (t, y(t)), for a.a. t ∈ [0,∞), t �= τj(y(t)), j ∈ N,

y(0) = x0,

y(t+) = y(t) + Ij(y(t)), for t = τj(y(t)), j ∈ N,

(1)

where, as one can see, there are infinitely many impulses at variable times (state-dependent impulses).
The exploration of the area of impulsive differential equations has a quite long history. It started by [18]

in 1960 and has been developed in many directions but, in fact, problems with pulse action are met already 
in [7]. Moreover, a lot of processes in biology, economics, medicine, physics and other fields have been 
modeled by impulsive equations or inclusions (see, e.g., [2,6,11,15,19] and references therein).

For problems with fixed moments of impulses (i.e., τj ≡ const) several methods from continuous problems 
can be simply adopted (see [12] and references therein). Problems with state-dependent impulses are much 

E-mail address: ggabor@mat.umk.pl.

http://dx.doi.org/10.1016/j.jmaa.2016.09.046
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.09.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ggabor@mat.umk.pl
http://dx.doi.org/10.1016/j.jmaa.2016.09.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.09.046&domain=pdf


1428 G. Gabor / J. Math. Anal. Appl. 446 (2017) 1427–1448

more complicated, especially the qualitative ones. One of the obstacles is related with a topology in a 
suitable function space, where all solutions could be embedded. Main techniques to examine a topological 
structure of the solution set require a Banach space regularity (an absolute neighborhood retract regularity, 
at least), see e.g. [9,11]. Therefore a B-topology proposed by Akhmet in [2] is insufficient. Recently, in [16]
a nice function Banach space CJm([0, a]) was defined and, under suitable assumptions, all solutions on a 
compact interval [a, b] were interpreted as elements of this space. This allowed the authors to prove that the 
solution set of the Cauchy multivalued problem is an Rδ-set. Note that the Rδ structure is very important 
in many applications and has been studied since the well known Aronszajn theorem was published in 1942, 
see [4]. Roughly speaking, Rδ-sets are compact and acyclic, that is, they have the same homology groups 
as singletons.

Impulsive problems on the half-line [0, ∞) bring another difficulty, namely, a lifetime of some trajectories 
can be finite even if each barrier (a hyperspace of impacts) is met exactly once. Therefore in the paper we 
devote some space to analysis of this phenomenon.

The existence of solutions for differential problems on noncompact intervals can be obtained by various 
techniques while the inverse limit method proposed in [13] and [3] is very useful for results on a topological 
structure of solution sets for such problems (see, e.g., [10] where this method is applied for problems with 
impulses in fixed moments). Unfortunately, this fruitful method is of limited use for impulsive problems with 
state-dependent impulses. Nevertheless we describe in the paper the situation this technique is applicable. 
In more general cases we are forced to look for more sophisticated tools.

The paper is organized as follows. Section 2 contains some basic notions and results we use in main parts 
of the paper, and we provide a new Fréchet space such that all solutions to problem (1) can be interpreted as 
its elements. Since every Fréchet space is an ANR, it becomes a good environment to examine a topological 
structure of the solution set. Section 3 is divided into three subsections. In the first one we give and analyze 
several assumptions we will need to prove main results. Especially we comment conditions on barriers 
guaranteeing that solutions meet every barrier exactly once and their lifetime is infinite. In subsection 3.2
the inverse limit technique is applied to prove the first theorem on an Rδ structure. Here the results from [16]
are used to build an inverse system of sets with an inverse limit being the solution set for (1). The second 
main result, with a quite long proof, is contained in subsection 3.3. One illustrative example is also given. 
The paper finishes with some concluding remarks because it was not the goal of the paper to present results 
in the highest generality with more complicated formulation and proofs. We find the construction of a 
suitable function space PC∞ and presentation of the idea of proof more valuable and transparent.

2. Preliminaries

Let X, Y be topological spaces. In the whole paper by a multivalued map from X to Y we mean a 
function, denoted by F : X � Y with domain X and values being nonempty subsets of Y . A multivalued 
map F : X � Y is said to be upper semicontinuous (for short u.s.c.) if F−1(V ) = {x ∈ X | F (x) ⊂ V } is 
an open subset of X for every open V ⊆ Y .

Recall that a subset A ⊂ X is called a retract of X if there exists a continuous function r : X → A such 
that r(x) = x for every x ∈ A. A is a neighborhood retract of X if there exists an open subset U ⊂ X such 
that A ⊂ U and A is a retract of U . If we have two spaces X, Y , then every homeomorphism h : X → Y

such that h(X) is a closed subset of Y is called an embedding. We say that X is an absolute retract (absolute 
neighborhood retract) if for any space Y and for any embedding h : X → Y the set h(X) is a retract of Y
(resp. a neighborhood retract of Y ). We write X ∈ AR (resp. X ∈ ANR).

A compact nonempty space is called an Rδ-set provided there exists a decreasing sequence {An} of 
compact absolute retracts such that A =

⋂
n≥1 An.

We will use the following characterization of Rδ-sets.
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