

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Solvability of some inverse problems for the nonstationary heat-and-mass-transfer system

S.G. Pyatkov*, M.L. Samkov

Yugra State University, Chekhov st. 16, 628012, Khanty-Mansiisk, Russia

ARTICLE INFO

Article history: Received 10 July 2014 Available online 23 September 2016 Submitted by A. Lunardi

Keywords:
Parabolic equation
Inverse problem
Control problem
Heat-and-mass transfer
Navier-Stokes system

ABSTRACT

We study solvability of inverse problems of finding the right-hand side together with a solution itself for the nonstationary heat-and-mass-transfer system. The system consists of the Navier–Stokes system whose right-hand side contains the temperature of a fluid and the concentration of an admixture and the parabolic equations for the temperature of a fluid and the concentration. The right-hand side of the equation for the concentration is unknown and characterizes the volumetric density of sources of an admixture in a fluid. The usual boundary conditions are supplemented with the overdetermination conditions which are the values of the concentration on some system of surfaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We examine the system

$$u_t - \nu \Delta u + (u, \nabla)u + \nabla p = f + \beta_c C + \beta_\theta \Theta, \quad \text{div } u = 0,$$
 (1)

$$\Theta_t - \operatorname{div}(\lambda_\theta \nabla \Theta) + (u, \nabla)\Theta = f_\theta, \tag{2}$$

$$C_t + (u, \nabla)C + (b, \nabla)C + kC - \lambda_c \Delta C = f_c, \tag{3}$$

where $\nu = const > 0$, $(x,t) \in Q = G \times (0,T)$ $(G \subset \mathbb{R}^n, T < \infty)$, u, Θ, p, C are the velocity vector, the temperature of a fluid, the pressure, the concentration of an admixture (inorganic or organic) in a fluid, and f_c is the volumetric density of sources of an admixture, respectively. The system (1)–(3) describes the propagation of an admixture in a fluid. In particular, this system includes the classical Oberbeck–Boussinesq model (see, for instance, [9,22]), where the vector-function b and the function b are zero. We assume that these functions $b = (b_1, b_2, \ldots, b_n)$ and b are known coefficients. Generally, this vector b (or just one coefficient before the derivative with respect to b b0 is the surface of a fluid) characterizes the settling

E-mail addresses: pyatkov@math.nsc.ru (S.G. Pyatkov), maxwell86@mail.ru (M.L. Samkov).

^{*} Corresponding author.

rate for an admixture and the coefficient k the admixture decay due to chemical reactions. This more complicated model in the stationary case is studied in [2], where the relevant references can be found to both nonstationary and stationary cases. The functions f_{θ} and f are the densities of the heat sources and external forces. The coefficients λ_c and λ_{θ} stand for the solute diffusivity and the thermal diffusivity. In the Oberbeck–Boussinesq model, the vector-functions β_c and β_{θ} are the mass transfer coefficient and the heat-transfer coefficient multiplied by the free fall acceleration. For generality, we assume below that β_c and β_{θ} are vector-functions of the variables (x,t). Since in the nonlinear case we obtain only local (in time) solvability, we do not impose any constraints on n assuming just that $n \geq 2$. The proof is the same for every n. For simplicity, we assume the domain G to be bounded though the main results are valid for a wide class of unbounded domains too. The system (1)–(3) is supplemented with the initial and boundary conditions

$$u|_{t=0} = u_0, \quad u|_S = g_1(t, x), \quad \Gamma = \partial G, \quad S = \Gamma \times (0, T),$$
 (4)

$$\Theta|_{t=0} = \Theta_0, \quad \Theta|_S = g_2(t,x), \quad C|_{t=0} = C_0, \quad C|_S = g_3(t,x).$$
 (5)

We consider an inverse problem of defining a solution to the system (1)–(3) and the right-hand side f_c in (3) using the data of additional measurements on cross-sections of G. Let $x'' = (x_{s+1}, x_{s+2}, \ldots, x_n)$ $(s = 0, 1, \ldots, n-1)$. If $s \ge 1$ then we put $x' = (x_1, x_2, \ldots, x_s)$. The right-hand side in (3) is assumed to be known in some part of the domain $Q' = G_1 \times (0, T)$ and unknown in the domain $Q'' = G_0 \times (0, T)$, where G_1 and G_0 either are nonempty disjoint domains such that $\overline{G_0} \cup \overline{G_1} = \overline{G}$ or $G_1 = \emptyset$ and thereby Q'' = Q. The right-hand side is of the form

$$f_c = f_0(x,t) + \sum_{i=1}^m f_i(x,t)a_i(x',t), \quad (x,t) \in Q,$$
(6)

where f_i (i = 0, 1, ..., m) are given functions which vanish on Q' for i = 1, 2, ..., m. The functions $a_i(x', t)$ $(a_i(t))$ for s = 0 in this representation are unknown and the overdetermination conditions for defining these functions are of the form

$$C|_{S_i} = \psi_i(t, x) \ (S_i = (0, T) \times \Gamma_i, \ i = 1, 2, \dots, m),$$
 (7)

where $\{\Gamma_i\}$ is a collection of smooth s-dimensional surfaces lying in G_0 . For s=0, the surfaces Γ_i are just points lying in G_0 and $G_0=G$ or G_0 is a neighborhood of the union of these points. Thus we look for the unknowns $a_i(x',t)$ which depend on some part of variables and the dimension of the surfaces S_i coincides with the number s+1 of these variables.

The description of some numerical methods for solving boundary value problems for the system (1)-(3) is exposed in [22]. We also can refer to the book [2], where many inverse and extremal problem are studied in the stationary case and necessary bibliography can be found. Some simplified models are studied in [20, 11,7]. We do not know the articles where the inverse problems (1)-(7) for the complete system are studied. Many results connected with solvability of inverse problems for the Navier–Stokes system and the linearized Navier–Stokes system are presented in [23]. The inverse problems (1)-(7) arise when describing heat and mass transfer, filtration, diffusion, and some other physical processes. We can note that, in a real situation, even the simplest one-dimensional models used in monitoring and warning systems for river basins include several parabolic equations relative to concentrations. So our model can serve only as an example of such a model. For parabolic equations and systems the problems of the above type are studied in many articles and we can refer to the book [10], where the problems of this type are discussed in the case of parabolic equations of the second order and s = n - 1. In the case of n = 1 (thus the unknowns a_i depend only on t and the surfaces S_i are just points) linear and nonlinear problems are studied in Hölder spaces in [18].

Download English Version:

https://daneshyari.com/en/article/4613777

Download Persian Version:

https://daneshyari.com/article/4613777

<u>Daneshyari.com</u>