

Solvability of some inverse problems for the nonstationary heat-and-mass-transfer system

S.G. Pyatkov*, M.L. Samkov
Yugra State University, Chekhov st. 16, 628012, Khanty-Mansiisk, Russia

A R T I C L E I N F O

Article history:

Received 10 July 2014
Available online 23 September 2016
Submitted by A. Lunardi
Keywords:
Parabolic equation
Inverse problem
Control problem
Heat-and-mass transfer
Navier-Stokes system

Abstract

We study solvability of inverse problems of finding the right-hand side together with a solution itself for the nonstationary heat-and-mass-transfer system. The system consists of the Navier-Stokes system whose right-hand side contains the temperature of a fluid and the concentration of an admixture and the parabolic equations for the temperature of a fluid and the concentration. The right-hand side of the equation for the concentration is unknown and characterizes the volumetric density of sources of an admixture in a fluid. The usual boundary conditions are supplemented with the overdetermination conditions which are the values of the concentration on some system of surfaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We examine the system

$$
\begin{gather*}
u_{t}-\nu \Delta u+(u, \nabla) u+\nabla p=f+\beta_{c} C+\beta_{\theta} \Theta, \quad \operatorname{div} u=0, \tag{1}\\
\Theta_{t}-\operatorname{div}\left(\lambda_{\theta} \nabla \Theta\right)+(u, \nabla) \Theta=f_{\theta}, \tag{2}\\
C_{t}+(u, \nabla) C+(b, \nabla) C+k C-\lambda_{c} \Delta C=f_{c}, \tag{3}
\end{gather*}
$$

where $\nu=$ const $>0,(x, t) \in Q=G \times(0, T)\left(G \subset \mathbb{R}^{n}, T<\infty\right), u, \Theta, p, C$ are the velocity vector, the temperature of a fluid, the pressure, the concentration of an admixture (inorganic or organic) in a fluid, and f_{c} is the volumetric density of sources of an admixture, respectively. The system (1)-(3) describes the propagation of an admixture in a fluid. In particular, this system includes the classical Oberbeck-Boussinesq model (see, for instance, $[9,22]$), where the vector-function b and the function k are zero. We assume that these functions $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and k are known coefficients. Generally, this vector b (or just one coefficient before the derivative with respect to $z(z=0$ is the surface of a fluid)) characterizes the settling

[^0]rate for an admixture and the coefficient k the admixture decay due to chemical reactions. This more complicated model in the stationary case is studied in [2], where the relevant references can be found to both nonstationary and stationary cases. The functions f_{θ} and f are the densities of the heat sources and external forces. The coefficients λ_{c} and λ_{θ} stand for the solute diffusivity and the thermal diffusivity. In the Oberbeck-Boussinesq model, the vector-functions β_{c} and β_{θ} are the mass transfer coefficient and the heat-transfer coefficient multiplied by the free fall acceleration. For generality, we assume below that β_{c} and β_{θ} are vector-functions of the variables (x, t). Since in the nonlinear case we obtain only local (in time) solvability, we do not impose any constraints on n assuming just that $n \geq 2$. The proof is the same for every n. For simplicity, we assume the domain G to be bounded though the main results are valid for a wide class of unbounded domains too. The system (1)-(3) is supplemented with the initial and boundary conditions
\[

$$
\begin{gather*}
\left.u\right|_{t=0}=u_{0},\left.\quad u\right|_{S}=g_{1}(t, x), \quad \Gamma=\partial G, \quad S=\Gamma \times(0, T), \tag{4}\\
\left.\Theta\right|_{t=0}=\Theta_{0},\left.\quad \Theta\right|_{S}=g_{2}(t, x),\left.\quad C\right|_{t=0}=C_{0},\left.\quad C\right|_{S}=g_{3}(t, x) . \tag{5}
\end{gather*}
$$
\]

We consider an inverse problem of defining a solution to the system (1)-(3) and the right-hand side f_{c} in (3) using the data of additional measurements on cross-sections of G. Let $x^{\prime \prime}=\left(x_{s+1}, x_{s+2}, \ldots, x_{n}\right)$ $(s=0,1, \ldots, n-1)$. If $s \geq 1$ then we put $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$. The right-hand side in (3) is assumed to be known in some part of the domain $Q^{\prime}=G_{1} \times(0, T)$ and unknown in the domain $Q^{\prime \prime}=G_{0} \times(0, T)$, where G_{1} and G_{0} either are nonempty disjoint domains such that $\overline{G_{0}} \cup \overline{G_{1}}=\bar{G}$ or $G_{1}=\emptyset$ and thereby $Q^{\prime \prime}=Q$. The right-hand side is of the form

$$
\begin{equation*}
f_{c}=f_{0}(x, t)+\sum_{i=1}^{m} f_{i}(x, t) a_{i}\left(x^{\prime}, t\right), \quad(x, t) \in Q \tag{6}
\end{equation*}
$$

where $f_{i}(i=0,1, \ldots, m)$ are given functions which vanish on Q^{\prime} for $i=1,2, \ldots, m$. The functions $a_{i}\left(x^{\prime}, t\right)$ $\left(a_{i}(t)\right.$ for $\left.s=0\right)$ in this representation are unknown and the overdetermination conditions for defining these functions are of the form

$$
\begin{equation*}
\left.C\right|_{S_{i}}=\psi_{i}(t, x) \quad\left(S_{i}=(0, T) \times \Gamma_{i}, \quad i=1,2, \ldots, m\right), \tag{7}
\end{equation*}
$$

where $\left\{\Gamma_{i}\right\}$ is a collection of smooth s-dimensional surfaces lying in G_{0}. For $s=0$, the surfaces Γ_{i} are just points lying in G_{0} and $G_{0}=G$ or G_{0} is a neighborhood of the union of these points. Thus we look for the unknowns $a_{i}\left(x^{\prime}, t\right)$ which depend on some part of variables and the dimension of the surfaces S_{i} coincides with the number $s+1$ of these variables.

The description of some numerical methods for solving boundary value problems for the system (1)-(3) is exposed in [22]. We also can refer to the book [2], where many inverse and extremal problem are studied in the stationary case and necessary bibliography can be found. Some simplified models are studied in [20, $11,7]$. We do not know the articles where the inverse problems (1)-(7) for the complete system are studied. Many results connected with solvability of inverse problems for the Navier-Stokes system and the linearized Navier-Stokes system are presented in [23]. The inverse problems (1)-(7) arise when describing heat and mass transfer, filtration, diffusion, and some other physical processes. We can note that, in a real situation, even the simplest one-dimensional models used in monitoring and warning systems for river basins include several parabolic equations relative to concentrations. So our model can serve only as an example of such a model. For parabolic equations and systems the problems of the above type are studied in many articles and we can refer to the book [10], where the problems of this type are discussed in the case of parabolic equations of the second order and $s=n-1$. In the case of $n=1$ (thus the unknowns a_{i} depend only on t and the surfaces S_{i} are just points) linear and nonlinear problems are studied in Hölder spaces in [18].

https://daneshyari.com/en/article/4613777

Download Persian Version:
https://daneshyari.com/article/4613777

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pyatkov@math.nsc.ru (S.G. Pyatkov), maxwel186@mail.ru (M.L. Samkov).

