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We study solvability of inverse problems of finding the right-hand side together with 
a solution itself for the nonstationary heat-and-mass-transfer system. The system 
consists of the Navier–Stokes system whose right-hand side contains the temperature 
of a fluid and the concentration of an admixture and the parabolic equations for the 
temperature of a fluid and the concentration. The right-hand side of the equation 
for the concentration is unknown and characterizes the volumetric density of sources 
of an admixture in a fluid. The usual boundary conditions are supplemented with 
the overdetermination conditions which are the values of the concentration on some 
system of surfaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We examine the system

ut − νΔu + (u,∇)u + ∇p = f + βcC + βθΘ, div u = 0, (1)

Θt − div(λθ∇Θ) + (u,∇)Θ = fθ, (2)

Ct + (u,∇)C + (b,∇)C + kC − λc ΔC = fc, (3)

where ν = const > 0, (x, t) ∈ Q = G × (0, T ) (G ⊂ R
n, T < ∞), u, Θ, p, C are the velocity vector, the 

temperature of a fluid, the pressure, the concentration of an admixture (inorganic or organic) in a fluid, 
and fc is the volumetric density of sources of an admixture, respectively. The system (1)–(3) describes the 
propagation of an admixture in a fluid. In particular, this system includes the classical Oberbeck–Boussinesq 
model (see, for instance, [9,22]), where the vector-function b and the function k are zero. We assume 
that these functions b = (b1, b2, . . . , bn) and k are known coefficients. Generally, this vector b (or just one 
coefficient before the derivative with respect to z (z = 0 is the surface of a fluid)) characterizes the settling 
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rate for an admixture and the coefficient k the admixture decay due to chemical reactions. This more 
complicated model in the stationary case is studied in [2], where the relevant references can be found to 
both nonstationary and stationary cases. The functions fθ and f are the densities of the heat sources and 
external forces. The coefficients λc and λθ stand for the solute diffusivity and the thermal diffusivity. In 
the Oberbeck–Boussinesq model, the vector-functions βc and βθ are the mass transfer coefficient and the 
heat-transfer coefficient multiplied by the free fall acceleration. For generality, we assume below that βc

and βθ are vector-functions of the variables (x, t). Since in the nonlinear case we obtain only local (in time) 
solvability, we do not impose any constraints on n assuming just that n ≥ 2. The proof is the same for 
every n. For simplicity, we assume the domain G to be bounded though the main results are valid for a 
wide class of unbounded domains too. The system (1)–(3) is supplemented with the initial and boundary 
conditions

u|t=0 = u0, u|S = g1(t, x), Γ = ∂G, S = Γ × (0, T ), (4)

Θ|t=0 = Θ0, Θ|S = g2(t, x), C|t=0 = C0, C|S = g3(t, x). (5)

We consider an inverse problem of defining a solution to the system (1)–(3) and the right-hand side fc
in (3) using the data of additional measurements on cross-sections of G. Let x′′ = (xs+1, xs+2, . . . , xn)
(s = 0, 1, . . . , n − 1). If s ≥ 1 then we put x′ = (x1, x2, . . . , xs). The right-hand side in (3) is assumed to be 
known in some part of the domain Q′ = G1 × (0, T ) and unknown in the domain Q′′ = G0 × (0, T ), where 
G1 and G0 either are nonempty disjoint domains such that G0 ∪G1 = G or G1 = ∅ and thereby Q′′ = Q. 
The right-hand side is of the form

fc = f0(x, t) +
m∑
i=1

fi(x, t)ai(x′, t), (x, t) ∈ Q, (6)

where fi (i = 0, 1, . . . , m) are given functions which vanish on Q′ for i = 1, 2, . . . , m. The functions ai(x′, t)
(ai(t) for s = 0) in this representation are unknown and the overdetermination conditions for defining these 
functions are of the form

C|Si
= ψi(t, x)

(
Si = (0, T ) × Γi, i = 1, 2, . . . ,m

)
, (7)

where {Γi} is a collection of smooth s-dimensional surfaces lying in G0. For s = 0, the surfaces Γi are just 
points lying in G0 and G0 = G or G0 is a neighborhood of the union of these points. Thus we look for the 
unknowns ai(x′, t) which depend on some part of variables and the dimension of the surfaces Si coincides 
with the number s + 1 of these variables.

The description of some numerical methods for solving boundary value problems for the system (1)–(3) 
is exposed in [22]. We also can refer to the book [2], where many inverse and extremal problem are studied 
in the stationary case and necessary bibliography can be found. Some simplified models are studied in [20,
11,7]. We do not know the articles where the inverse problems (1)–(7) for the complete system are studied. 
Many results connected with solvability of inverse problems for the Navier–Stokes system and the linearized 
Navier–Stokes system are presented in [23]. The inverse problems (1)–(7) arise when describing heat and 
mass transfer, filtration, diffusion, and some other physical processes. We can note that, in a real situation, 
even the simplest one-dimensional models used in monitoring and warning systems for river basins include 
several parabolic equations relative to concentrations. So our model can serve only as an example of such 
a model. For parabolic equations and systems the problems of the above type are studied in many articles 
and we can refer to the book [10], where the problems of this type are discussed in the case of parabolic 
equations of the second order and s = n − 1. In the case of n = 1 (thus the unknowns ai depend only on 
t and the surfaces Si are just points) linear and nonlinear problems are studied in Hölder spaces in [18]. 
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