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Dissipative hyperbolic systems of regularity-loss have been recently received 
increasing attention. Extra higher regularity is usually assumed to obtain the 
optimal decay estimates, in comparison with the global-in-time existence of 
solutions. In this paper, we develop a new frequency-localization time-decay 
property, which enables us to overcome the technical difficulty and improve the 
minimal decay-regularity for dissipative systems. As an application, it is shown that 
the optimal decay rate of L1(R3)–L2(R3) is available for Euler–Maxwell equations 
with the critical regularity sc = 5/2, that is, the extra higher regularity is not 
necessary.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in compressible isentropic Euler–Maxwell equations in plasmas physics 
(see, for example, [4,17]), which are given by the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tn + ∇ · (nu) = 0,
∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = −n(E + u×B) − nu,

∂tE −∇×B = nu,

∂tB + ∇× E = 0,

(1.1)

with constraints

∇ · E = n∞ − n, ∇ ·B = 0 (1.2)
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for (t, x) ∈ [0, +∞) × R3. Here the unknowns n > 0, u ∈ R3 are the density and the velocity of electrons, 
and E ∈ R3, B ∈ R3 denote the electric field and magnetic field, respectively. The pressure p(n) is a given 
smooth function of n satisfying p′(n) > 0 for n > 0. For the sake of simplicity, n∞ is assumed to be a 
positive constant, which stands for the density of positively charged background ions. Observe that system 
(1.1) admits a constant equilibrium state (n∞, 0, 0, B∞), which is regarded as vector in R10. B∞ ∈ R3 is 
an arbitrary fixed constant vector. The main objective of the present paper is to investigate the large-time 
behavior for the corresponding Cauchy problem. For this purpose, system (1.1) is supplemented with the 
initial data

(n, u,E,B)|t=0 = (n0, u0, E0, B0)(x), x ∈ R3. (1.3)

It is not difficult to see that (1.2) can hold for any t > 0 if the initial data satisfy the following compatible 
conditions

∇ · E0 = n∞ − n0, ∇ ·B0 = 0, x ∈ R3. (1.4)

Set w = (n, u, E, B)� (� transpose) and w0 = (n0, u0, E0, B0)�. Then (1.1) can be written in the vector 
form

A0(w)wt +
3∑

j=1
Aj(w)wxj

+ L(w)w = 0, (1.5)

where the coefficient matrices are given explicitly as

A0(w) =

⎛⎜⎜⎜⎝
a(n) 0 0 0

0 nI 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎠ , L(w) =

⎛⎜⎜⎜⎝
0 0 0 0
0 n(I − ΩB) nI 0
0 −nI 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

3∑
j=1

Aj(w)ξj =

⎛⎜⎜⎜⎝
a(n)(u · ξ) p′(n)ξ 0 0
p′(n)ξ� n(u · ξ)I 0 0

0 0 0 −Ωξ

0 0 Ωξ 0

⎞⎟⎟⎟⎠ .

Here, a(n) := p′(n)/n is the enthalpy function, I is the identity matrix of third order. For any ξ =
(ξ1, ξ2, ξ3) ∈ R3, Ωξ is the skew-symmetric matrix defined by

Ωξ =

⎛⎜⎝ 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

⎞⎟⎠
such that ΩξE

� = (ξ ×E)� (as a column vector in R3).
Clearly, (1.5) is a symmetric hyperbolic system, since A0(w) is real symmetric and positive definite and 

Aj(w)(j = 1, 2, 3) are real symmetric. Generally, the main feature of (1.5) is the finite time blowup of 
classical solutions even when the initial data are smooth and small. In one dimensional space, Chen, Jerome 
and Wang [4] first constructed global weak solutions by using the Godunov scheme of the fractional step. 
By using the dissipative effect of damping terms, Peng Wang and Gu [28] established the global existence of 
smooth solutions in the periodic domain. Duan [7] analyzed the regularity-loss mechanism in the dissipation 
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