
The Journal of Systems and Software 114 (2016) 38–53

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Prioritized static slicing and its application to fault localization

Yiji Zhang∗, Raul Santelices

University of Notre Dame, Indiana, USA

a r t i c l e i n f o

Article history:

Received 2 April 2014

Revised 8 August 2015

Accepted 30 October 2015

Available online 5 November 2015

Keywords:

Static slicing

Probabilistic slicing

Thin slicing

Dependence analysis

Fault localization

Program analysis

a b s t r a c t

Static slicing is a popular program analysis used in software engineering to find which parts of a program

affect other parts. Unfortunately, static slicing often produces large and imprecise results because of its con-

servative nature. Dynamic slicing can be an alternative in some cases, but it requires detailed runtime infor-

mation that can be hard or impossible to obtain or re-create. This is often the case when users report bugs

in deployed software. In this paper, we significantly improve the precision of static slicing through PrioSlice,

a novel technique that exploits the insight that not all statements in a static slice are equally likely to affect

another statement such as a failing point. PrioSlice first computes a probabilistic model of the dependencies

in the program. In this model, some data dependencies are more likely to occur than others and control de-

pendencies are less likely than data dependencies to propagate effects (e.g., errors). PrioSlice then traverses

the program backwards, like static slicing, but in an order defined by the computed dependence probabilities.

Our study of fault localization on various Java subjects indicates that PrioSlice can help localize faults much

more effectively than existing static-slicing approaches.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Program slicing is a popular program-analysis technique used for

many software-engineering tasks, such as fault localization and pro-

gram comprehension (Weiser, 1984). Static program slicing, in par-

ticular, finds the set of all statements in the program—the slice—that

might affect a particular point in that program. Unfortunately, how-

ever, static slicing is often too imprecise to be practical because it

tends to produce slices whose sizes are very large (Binkley et al.,

2007; Santelices et al., 2010), even when considering calling contexts

for interprocedural analysis (Horwitz et al., 1990).

To reduce the size of slices and, thus, increase their usefulness,

researchers have developed other forms of program slicing such as

dynamic slicing (Korel and Laski, 1988; Agrawal and Horgan, 1990),

variants of it (Beszedes et al., 2002; DeMillo et al., 1996; Hall, 1995),

combinations of static slices with execution data (Gupta and Soffa,

1995; Horwitz et al., 2010; Krinke, 2006; Mock et al., 2005), and

slice pruning based on various criteria (Acharya and Robinson, 2011;

Canfora et al., 1998; Sridharan et al., 2007; Zhang et al., 2006). These

variants, however, focus on subsets of all program behaviors and can

miss faulty code. Moreover, these techniques can still be imprecise

(Santelices et al., 2010).

∗ Corresponding author. Tel.: +1 5748550201.

E-mail addresses: yzhang20@nd.edu, yiji21@gmail.com (Y. Zhang), rsanteli@nd.edu

(R. Santelices).

Dynamic approaches provide concrete insights on how programs

behave in typical cases, provided that a representative set of execu-

tions is used. Unfortunately, such a set of executions is not always

available to developers. For fault localization, one failed execution can

be enough to find a fault, but multiple executions are often needed

to make localization effective (Jones et al., 2002; Jones and Harrold,

2005). In many cases, such as bugs reported by users, developers may

not even have one execution to work with. Another problem is that

faulty executions can be hard to reproduce for debugging. This prob-

lem is exacerbated by non-determinism in software whose behav-

ior depends on external factors such as time and thread interleaving.

One possibility is to deploy software instrumented to collect dynamic

slices, but this would incur unacceptable runtime overheads. There-

fore, when dynamic slicing is not an option, static slicing must be

used.

In this paper, we present a novel technique called PrioSlice which

considerably increases the effectiveness of static slicing by reducing

the negative effects of its imprecision. PrioSlice prioritizes the in-

spection of a static slice (i.e., the subset of the program that affects an-

other program point) using a probabilistic model of how program de-

pendencies (Aho et al., 2006; Ferrante et al., 1987) (the building blocks

of program slices) occur and how they affect the slicing criterion (i.e.,

a value in a program point from which the slice is computed). To that

end, for each statement in a slice, PrioSlice computes a weight in

the range [0,1] representing the likelihood that this statement belongs

to the slice. Thus, PrioSlice tells not only whether a statement is in a

slice, but also how much.

http://dx.doi.org/10.1016/j.jss.2015.10.052

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.10.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.10.052&domain=pdf
mailto:yzhang20@nd.edu
mailto:yiji21@gmail.com
mailto:rsanteli@nd.edu
http://dx.doi.org/10.1016/j.jss.2015.10.052


Y. Zhang, R. Santelices / The Journal of Systems and Software 114 (2016) 38–53 39

The probabilistic model of PrioSlice exploits two key insights. The

first insight is that not all data dependencies (Aho et al., 2006) are

equally likely to occur because of control-flow and aliasing (Andersen,

1994) reasons. Data dependencies are treated (mostly) as equals

by existing static-slicing techniques (Weiser, 1984; Sridharan et al.,

2007). Our model and technique, in contrast, gives a greater priority

to the data dependencies that are most likely to occur and cause a

particular program behavior (e.g., a failure) and, thus, more quickly

identifies its causes (e.g., a fault).

The second insight used in this model is that control dependencies

(Ferrante et al., 1987) are usually weaker than data dependencies at

propagating effects such as errors (Masri and Podgurski, 2009; San-

telices et al., 2010; Sridharan et al., 2007). Therefore, they should not

be treated as equals with data dependencies for slice inspection, as

Weiser’s method does (Weiser, 1984), but they should not be dis-

carded upfront either as, for example, thin slicing does (Sridharan

et al., 2007). Our model incorporates both types of dependencies

while giving them different weights according to their respective

effect-propagation potential estimated by our probabilistic analysis.

Concretely, PrioSlice first computes the static backward slice

from a slicing criterion in a program and then solves the system

of equations given by the model for the dependence graph of that

program. The solution for these equations is the set of weights for

the statements in the static slice. These weights are the result of

using a standard method for solving real-valued data-flow prob-

lems (Ramalingam, 1996). PrioSlice uses these results to perform a

best-first traversal (Pearl, 1984) of the slice, which replaces Weiser’s

breadth-first traversal approach (Weiser, 1984) of static dependen-

cies by prioritizing statements according to their weight.

Unlike statistical approaches (e.g., Jones and Harrold, 2005) which

provide seemingly-random orders to inspect programs (Parnin and

Orso, 2011), static-slicing approaches such as PrioSlice navigate the

dependence graph in order by visiting only neighbors of visited nodes

as suggested by Weiser (1984). Each new statement to inspect is

reached via a direct dependence to another statement already in-

spected. Navigating dependencies is, thus, a more natural way for de-

velopers to inspect programs (Parnin and Orso, 2011).

To study the feasibility and effectiveness of PrioSlice, in this pa-

per, we chose fault localization as the application—arguably the most

important one. Fault localization is the first step for debugging a pro-

gram, in which the causes of a reported failure must be found before

the program can be fixed. We implemented our technique for slicing

Java-bytecode programs using our dependence-analysis infrastruc-

ture DUA-Forensics (Santelices and Harrold, 2007; Santelices et al.,

2013a). Then, we applied three static-slicing techniques to several

faults across various Java subjects. These techniques are PrioSlice,

Weiser’s traversal approach for static slicing (Weiser, 1984), and thin

slicing (Sridharan et al., 2007).

Our results for these subjects and faults indicate with statistical

significance that PrioSlice can reach the faulty code faster than static

slicing. PrioSlice traverses, on average, about 13% of the program,

whereas Weiser’s approach requires an average inspection of about

27% of the program to find each fault. Meanwhile, thin slicing, when

it was able to find a fault at all (only 12 out of 60 in total),1 also

required to inspect about 18% of the program on average. For those

faults, PrioSlice required about the same amount of program (i.e.

17%) to be inspected on average. Though we can not draw the con-

clusion that PrioSlice is significantly better than thin slicing, we also

can’t tell that thin slicing is different from PrioSlice. (Not to mention

that PrioSlice was applicable to all faults, whereas thin slicing was

only able to 20% of the faults.)

1 Control dependencies can be added for the remaining faults after data dependen-

cies are exhausted, but the order in which this is done is unclear (Sridharan et al.,

2007).

The most important benefit of this work is that it provides a new

way of looking at static slices in which statements are distinguished

by relevance rather than just by membership in the slice. This feature

makes PrioSlice improve fault localization considerably. Its focused

traversal of dependence graphs also hints at its potential for related

applications such as program comprehension. We also applied a pre-

liminary forward version of this model (Santelices and Harrold, 2010;

Santelices et al., 2013b) for change-impact analysis with promising

first results. Finally, the probabilistic model underlying PrioSlice still

has room for improvements so that its benefits can further increase

in the future.

In all, the contributions of this paper include:

• A new form of static program slicing that indicates not only

whether, but also how much, each statement belongs to a slice.
• A new technique, PrioSlice that realizes this concept of proba-

bilistic slicing to prioritize the traversal of slices by the estimated

degree of membership of their statements.
• A study indicating that PrioSlice can considerably reduce the ef-

fort of static fault localization with respect to Weiser’s original ap-

proach and thin slicing.

2. Background

This section presents core concepts needed for this paper and il-

lustrates those concepts using the example program of Fig. 1.

2.1. Program dependencies

Control and data dependencies are the building blocks of program

slicing (Weiser, 1984; Horwitz et al., 1990). A statement T is control

dependent (Ferrante et al., 1987) on a statement S, denoted (S, T), if a

control-flow (jump) decision taken at S determines whether T is nec-

essarily executed. For example, in Fig. 1, line 4 is control dependent

on line 3 because the decision made at 3 determines whether 4 is

necessarily executed.

A statement U is data dependent (Aho et al., 2006) on a statement

D if a variable v can be defined (written) at D and used (read) at U and

there is a definition-clear path in the program for v (i.e., a path that

does not re-define v) from D to U. This definition of data dependence

implies that, if v is accessed via a pointer or reference p, p points to

the same memory location at D and U. We denote a data dependence

of U on D for variable v as (D, U, v), or just (D, U).

2.2. Program slicing

Program slicing was originally developed by Weiser (1984). A

static slice for a set of variables V at a program point C—the slicing

criterion—is the subset of all program statements that affect those

values at that point. A slice can also be defined simply for a program

point C as the set of all statements that affect either the values used

at C or the execution of C.

To realize Weiser’s approach, we use the dependence graph of

the program. This graph is using the data and control dependen-

cies reachable backwards from the slicing criterion, where nodes are

statements and edges are dependencies. Weiser’s approach performs

a backward breadth-first traversal of this graph to produce a visit or-

der of the statements. For fault localization, this order can be used

to measure the effort required to find a fault—the number of nodes

traversed until the fault is reached.

To illustrate, consider the example program in Fig. 1. Suppose that

we want to determine all statements in this program that affect the

value of v at statement 16. Using the backward transitive closure of

control and data dependencies from that statement, we obtain the

backward static slice 〈1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13〉.



Download English Version:

https://daneshyari.com/en/article/461379

Download Persian Version:

https://daneshyari.com/article/461379

Daneshyari.com

https://daneshyari.com/en/article/461379
https://daneshyari.com/article/461379
https://daneshyari.com

