

Existence and uniqueness of solutions for a class of doubly degenerate parabolic equations

Weilin Zou*, Juan Li
College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang, 330063, China

A R T I C L E I N F O

Article history:
Received 27 July 2016
Available online 5 October 2016
Submitted by Y. Du

Keywords:

Doubly degenerate
Existence and uniqueness
Doubling variable method

Abstract

In this paper, we study the Dirichlet problem for degenerate parabolic equations of the form $\frac{\partial u}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))-\operatorname{div} \phi(u)=f-\operatorname{div} g$, where the main operator $a(x, t, u, \nabla u)$ is allowed to degenerate with respect to the unknown u. Under suitable conditions on a and ϕ, we prove that there exists an unique solution u of this problem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we shall study the following degenerate parabolic problems:

$$
(\mathscr{P}) \begin{cases}\frac{\partial u}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))-\operatorname{div} \phi(u)=f-\operatorname{div} g & \text { in } Q_{T}=\Omega \times(0, T) \\ u=0 & \text { on } \Gamma=\partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \text { on } \Omega\end{cases}
$$

where Ω is a bounded domain of $\mathbb{R}^{N}(N \geq 1), T>0$ is a given number, f, g and u_{0} are measurable functions. Moreover, $a(x, t, s, \xi): \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function, and the function ϕ is continuous on \mathbb{R} with values in \mathbb{R}^{N}. We assume that there exists a continuous function $\alpha: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ with $\alpha(0)=0$, such that $a(x, t, s, \xi) \geq \alpha(|s|)|\xi|^{p}$ for any $s \in \mathbb{R}, \xi \in \mathbb{R}^{N}$ and a.e. $(x, t) \in Q_{T}$. So problem (\mathscr{P}) is degenerate for the subset $\left\{(x, t) \in Q_{T}: u(x, t)=0\right.$ or $\left.\nabla u=0\right\}$ of Q_{T}. We remark also that the principal part $\operatorname{div}(a(x, t, u, \nabla u))$ may be degenerate where u tends to infinite.

[^0]The simplest model is the following problem involving the classical porous medium-type equation:

$$
\left(P_{0}\right) \begin{cases}\frac{\partial u}{\partial t}-\triangle\left(|u|^{m-1} u\right)=f & \text { in } Q_{T} \\ u=0 & \text { on } \Gamma \\ u(x, 0)=u_{0}(x) & \text { on } \Omega\end{cases}
$$

which has been widely studied in the literature (see [20] and references therein). We remark that the problem we study here, has important and extensive applications in fluid dynamics in porous media, petroleum engineering, hydrology, etc. (see [11,12,20]).

In case of $\alpha \equiv$ constant >0, existence and uniqueness results of problem (\mathscr{P}) have been well studied in the literature. Without the aim to be complete, we only mention the works of $[1,2,22]$, where the existence of bounded weak solutions and renormalized solutions is proved. Especially, considering the case $f \in L^{1}\left(Q_{T}\right)$ and $g=0$, the authors in [1] have studied the existence and uniqueness results for a class of Stefan problems (i.e. the time derivative term is $\frac{\partial b(u)}{\partial t}$, where b is a maximal monotone graph on \mathbb{R}).

In the case that α is a positive function, $p=2$ and $g=0$, an existence result for problem (\mathscr{P}) which involves a first order term, was proved in [4] (see also [8]), under some suitable assumptions on the data u_{0} and f.

Considering the case that $\alpha(0)=0, g=0$ and (\mathscr{P}) involves a lower order term, Rakotoson studied the stationary case of (\mathscr{P}) in [19], and proved the existence of a weak solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. In [13], Giachetti and Maroscia proved the existence of distributional solutions, with assumptions that f, u_{0} are nonnegative functions satisfying $f \in L^{\infty}\left(Q_{T}\right)$ and $u_{0} \in L^{\infty}(\Omega)$. As references for other estimates of solutions for the doubly degenerate equations, we only mention the work of [6,10,21] without the aim to be complete.

In the case that $g=0, \alpha(0)=0$ and $f \in L^{\infty}\left(Q_{T}\right)$, the existence of distributional nonnegative solutions to problem (\mathscr{P}) was investigated in [13]. Suppose that $u_{0} \in L^{\infty}(\Omega)$ and $f \in L^{q}\left(Q_{T}\right)$ with $q>\max \left\{1+\frac{N}{p}, 2\right\}$, the existence of bounded solutions to problem (\mathscr{P}) has been studied in [23]. As problem (\mathscr{P}) involves a lower order term, it is proved in [25] that there exists at least one renormalized solution for L^{1} data. For the case that the time derivative term is $\frac{\partial b(u)}{\partial t}$, the authors proved that there exist bounded solutions in [26].

However, to the best of our knowledge, there are no existence and uniqueness results concerning degenerate problem (\mathscr{P}) for $g \neq 0$. Recently, the existence of bounded solutions to the stationary case of (\mathscr{P}) was proved in [24], under suitable integrability conditions on f and g. Motivated by the ideas in [1, $8,13,19,24]$, here we shall deal with the case of $g \neq 0$ and remove the restriction that $\frac{1}{\alpha} \in L_{l o c}^{1}[0,+\infty)$ in $[19,25]$. Furthermore, we also show that the solution u belongs to $C\left([0, T] ; L^{2}(\Omega)\right)$, and establish the uniqueness results under some additional assumptions (see Theorem 2.2).

We remark that when dealing with the existence result, one cannot expect that the solution u of (\mathscr{P}) belongs to $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ for $g \neq 0$, due to the fact that the main operator is degenerate for the subset $\left\{(x, t) \in Q_{T}: u(x, t)=0\right\}$. But instead, we only have $\tilde{\alpha}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, where $\tilde{\alpha}$ is defined in (2.3). To overcome this difficulty, we will prove the existence results to (\mathscr{P}) by using approximations twice, as in [24]. More precisely, we shall first prove the existence results for the case $\operatorname{div} g \in L^{1}\left(Q_{T}\right)$. To do this, we shall find a priori estimates on the solutions u_{n}, where u_{n} are the solution of the approximating problems whose principal parts are uniformly coercive operators. Then one has to show that, up to subsequences, u_{n} converges to some function u a.e. in Q_{T} and $\left.u_{n}\right|_{t=0}$ converges to $\left.u\right|_{t=0}$. Due to the fact that problem (\mathscr{P}) is degenerate, we can not obtain the uniform estimates of u_{n} in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$. Therefore the usual compactness result of Aubin type lemma can not be applied directly here. To this aim, we shall employ a test function method, and prove that u_{n} converges strongly to u in $C\left([0, T] ; L^{2}(\Omega)\right)$ (see step 4 in the proof of Theorem 3.1), which is the most technical part of the existence theorem. Moreover, we can not expect that ∇u_{n} converges to ∇u a.e. in Q_{T} and strongly in $\left(L^{p}\left(Q_{T}\right)\right)^{N}$, but instead, we show that $\chi_{\left\{\left|u_{n}\right|>k\right\}} \nabla u_{n}$ converges to $\chi_{\{|u|>k\}} \nabla u$ strongly in $\left(L^{p}\left(Q_{T}\right)\right)^{N}$ for any fixed $k>0$.

https://daneshyari.com/en/article/4613795

Download Persian Version:

https://daneshyari.com/article/4613795

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zwl267@163.com (W. Zou), ttyyD114@163.com (J. Li).

