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We consider the system modeling a mixture of n materials with frictional damping. 
We show that the corresponding semigroup is exponentially stable if and only if 
the imaginary axis is contained in the resolvent set of the infinitesimal generator. 
In particular this implies the lack of polynomial stability to the corresponding 
semigroup.
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1. Introduction

The theory of mixtures of solids has been widely investigated in the last decades, see for example [5,6,
8,9,11–13,24,26]. In recent years, an increasing interest has been directed to the study of the qualitative 
properties of solutions related to mixtures composed of two interacting continua. Several results concerning 
existence, uniqueness, continuous dependence and asymptotic stability can be found in the literature [1–4,
11,15,17–19,22,23]. In [10] F. Dell’Oro and Rivera, made a full characterization of the asymptotic behavior 
of the following mixture model
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with di ≥ 0, where at least one di is positive. They proved that depending on the relationships of the 
coefficients, three situations may occur. The system can be exponentially stable, polynomially stable or 
there exists oscillating solution.

Here we study the one dimensional model of a mixture of n interacting continua with reference config-
uration over [0, l]. Let us denote by u1 := u1(x1, t), u2 := u2(x2, t), ... , un := un(xn, t) where xi ∈ [0, l]. 
We assume that the particles under consideration occupy the same position at time t = 0, so that x = xi, 
therefore we can assume that

ui : [0, l] × [0,∞) → R.

The corresponding motion equations are given by

ρiu
i
tt = T i

x + P i + F i, i = 1, · · ·n, (1)

where ρi denotes the mass density, T i is the stress contribution of the i component of the mixture, P i is the 
internal body force that depends on the relative displacements (u1, · · · , un) and F i stand for the external 
forces associated with the constituents (ui). The constitutive law we use is

T i = ai1u
1
x + ai2u

2
x + ... + ainu

n
x , i = 1, · · ·n. (2)

Here we assume that P i is small such that it can be neglected and the frictional dissipative mechanism is 
produced as the external source given by

F i = −bi1u
1
t − bi2u

2
t − ...− binu

n
t , i = 1, · · ·n. (3)

Substituting relations (2)–(3) into system (1) we get

RUtt − AUxx + BUt = 0, (4)

with U = (u1, · · · , un) and

R = (ρiδij)n×n, A = (aij)n×n, B = (bij)n×n

where δij is the Kronecker’s delta, A is a positive definite (real) symmetric matrix and B a semipositive 
definite (real) symmetric matrix. The initial conditions are given by

U(x, 0) = U0(x), Ut(x, 0) = U1(x). (5)

Finally, we consider Dirichlet boundary conditions

U(0, t) = U(l, t) = 0, t ∈ R
+. (6)

In that follows and without loss of generality we can assume that B is diagonal matrix. Otherwise we 
make the substitution U = ST Ũ in equation (4), where ST , the transpose S, is the nonsingular matrix that 
diagonalize R and B simultaneously (see the Theorem 1). Multiplying the resulting equation by the matrix 
S we have

SRST Ũtt − SAST Ũxx + SBST Ũt = 0,
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