Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On Valdivia strong version of Nikodym boundedness property $\stackrel{\scriptscriptstyle \rm tr}{\sim}$

J. Kąkol^{a,b}, M. López-Pellicer^{c,*}

^a Adam Mickiewicz University, Poznań, Poland

^b Institute of Mathematics, Czech Academy of Sciences, Czech Republic

^c Department of Applied Mathematics and IUMPA, Universitat Politècnica de València, València, Spain

A R T I C L E I N F O

Article history: Received 16 October 2015 Available online 22 August 2016 Submitted by B. Cascales

Dedicated to the memory of Professor Manuel Valdivia (1928–2014)

Keywords: Finitely additive scalar measure (LF)-space Nikodym and strong Nikodym property Increasing tree σ -algebra Vector measure

ABSTRACT

Following Schachermayer, a subset \mathcal{B} of an algebra \mathcal{A} of subsets of Ω is said to have the *N*-property if a \mathcal{B} -pointwise bounded subset *M* of $ba(\mathcal{A})$ is uniformly bounded on \mathcal{A} , where $ba(\mathcal{A})$ is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on \mathcal{A} . Moreover \mathcal{B} is said to have the strong N-property if for each increasing countable covering $(\mathcal{B}_m)_m$ of \mathcal{B} there exists \mathcal{B}_n which has the N-property. The classical Nikodym–Grothendieck's theorem says that each σ -algebra \mathcal{S} of subsets of Ω has the *N*-property. The Valdivia's theorem stating that each σ -algebra S has the strong N-property motivated the main measure-theoretic result of this paper: We show that if $(\mathcal{B}_{m_1})_{m_1}$ is an increasing countable covering of a σ -algebra S and if $(\mathcal{B}_{m_1,m_2,\ldots,m_p,m_{p+1}})_{m_{p+1}}$ is an increasing countable covering of $\mathcal{B}_{m_1,m_2,\ldots,m_p}$, for each $p, m_i \in \mathbb{N}$, $1 \leq i \leq p$, then there exists a sequence $(n_i)_i$ such that each $\mathcal{B}_{n_1,n_2,\ldots,n_r}$, $r \in \mathbb{N}$, has the strong N-property. In particular, for each increasing countable covering $(\mathcal{B}_m)_m$ of a σ -algebra \mathcal{S} there exists \mathcal{B}_n which has the strong N-property, improving mentioned Valdivia's theorem. Some applications to localization of bounded additive vector measures are provided. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{B} be a subset of an algebra \mathcal{A} of subsets of a set Ω (in brief, set-algebra \mathcal{A}). The normed space $L(\mathcal{B})$ is the $span\{\chi_C : C \in \mathcal{B}\}$ of the characteristic functions of each set $C \in \mathcal{B}$ with the supremum norm $\|\cdot\|$ and $ba(\mathcal{A})$ is the Banach space of finitely additive measures on \mathcal{A} with bounded variation endowed with the variation norm, i.e., $|\cdot| := |\cdot|(\Omega)$. If $\{C_i : 1 \leq i \leq n\}$ is a measurable partition of $C \in \mathcal{A}$ and $\mu \in ba(\mathcal{A})$ then $|\mu|(C) = \Sigma_i |\mu|(C_i)$ and, as usual, we represent also by μ the linear form in $L(\mathcal{A})$ determined by

* Corresponding author.

 $^{^{*}}$ This research was supported for the first named author by the GAČR project 16-34860L and RVO: 67985840. It was also supported for the first and second named authors by Generalitat Valenciana, Conselleria d'Educació i Esport, Spain, Grant PROMETEO/2013/058.

E-mail addresses: kakol@amu.edu.pl (J. Kąkol), mlopezpe@mat.upv.es (M. López-Pellicer).

 $\mu(\chi_C) := \mu(C)$, for each $C \in \mathcal{A}$. By this identification we get that the dual of $L(\mathcal{A})$ with the dual norm is isometric to $ba(\mathcal{A})$ (see e.g., [2, Theorem 1.13]).

Polar sets are considered in the dual pair $\langle L(\mathcal{A}), ba(\mathcal{A}) \rangle$, M° means the polar of a set M and if $\mathcal{B} \subset \mathcal{A}$ the topology in $ba(\mathcal{A})$ of pointwise convergence in \mathcal{B} is denoted by $\tau_s(\mathcal{B})$. $(E', \tau_s(E))$ is the vector space of all continuous linear forms defined on a locally convex space E endowed with the topology $\tau_s(E)$ of the pointwise convergence in E. In particular, the topology $\tau_s(L(\mathcal{A}))$ in $ba(\mathcal{A})$ is $\tau_s(\mathcal{A})$.

The convex (absolutely convex) hull of a subset M of a topological vector space is denoted by co(M)(absco(M)) and $absco(M) = co(\cup \{rM : |r| = 1\})$. An equivalent norm to the supremum norm in $L(\mathcal{A})$ is the Minkowski functional of $absco(\{\chi_C : C \in \mathcal{A}\})$ ([14, Propositions 1 and 2]) and its dual norm is the \mathcal{A} -supremum norm, i.e., $\|\mu\| := \sup\{|\mu(C)| : C \in \mathcal{A}\}, \ \mu \in ba(\mathcal{A})$. The closure of a set is marked by an overline, hence if $P \subset L(\mathcal{A})$ then $\overline{span(P)}$ is the closure in $L(\mathcal{A})$ of the linear hull of P. \mathbb{N} is the set $\{1, 2, \ldots\}$ of positive integers.

Recall the classical Nikodym–Dieudonné–Grothendieck theorem (see [1, page 80, named as Nikodym–Grothendieck boundedness theorem]): If S is a σ -algebra of subsets of a set Ω and M is a S-pointwise bounded subset of ba(S) then M is a bounded subset of ba(S) (i.e., $\sup\{|\mu(C)| : \mu \in M, C \in S\} < \infty$, or, equivalently, $\sup\{|\mu|(\Omega) : \mu \in M\} < \infty$). This theorem was firstly obtained by Nikodym in [11] for a subset M of countably additive complex measures defined on S and later on by Dieudonné for a subset M of $ba(2^{\Omega})$, where 2^{Ω} is the σ -algebra of all subsets of Ω , see [3].

It is said that a subset \mathcal{B} of an algebra \mathcal{A} of subsets of a set Ω has the Nikodym property, N-property in brief, if the Nikodym–Dieudonné–Grothendieck theorem holds for \mathcal{B} , i.e., if each \mathcal{B} -pointwise bounded subset M of $ba(\mathcal{A})$ is bounded in $ba(\mathcal{A})$ (see [12, Definition 2.4] or [15, Definition 1]). Let us note that in this definition we may suppose that M is $\tau_s(\mathcal{A})$ -closed and absolutely convex. If \mathcal{B} has N-property then the polar set $\{\chi_C : C \in \mathcal{B}\}^\circ$ is bounded in $ba(\mathcal{A})$, hence $\{\chi_C : C \in \mathcal{B}\}^{\circ\circ} = \overline{absco\{\chi_C : C \in \mathcal{B}\}}$ is a neighborhood of zero in $L(\mathcal{A})$, whence $L(\mathcal{B})$ is dense in $L(\mathcal{A})$.

It is well known that the algebra of finite and co-finite subsets of N fails N-property [2, Example 5 in page 18] and that Schachermayer proved that the algebra $\mathcal{J}(I)$ of Jordan measurable subsets of I := [0, 1]has N-property (see [12, Corollary 3.5] and a generalization in [4, Corollary]). A recent improvement of this result for the algebra $\mathcal{J}(K)$ of Jordan measurable subsets of a compact k-dimensional interval K := $\Pi\{[a_i, b_i] : 1 \leq i \leq k\}$ in \mathbb{R}^k has been provided in [15, Theorem 2], where Valdivia proved that if $\mathcal{J}(K)$ is the increasing countable union $\cup_m \mathcal{B}_m$ there exists a positive integer n such that \mathcal{B}_n has N-property (see [8, Theorem 1] for a strong result in $\mathcal{J}(K)$). This fact motivated to say that a subset \mathcal{B} of a set-algebra \mathcal{A} has the strong Nikodym property, sN-property in brief, if for each increasing covering $\cup_m \mathcal{B}_m$ of \mathcal{B} there exists \mathcal{B}_n which has N-property. As far as we know this result suggested the following very interesting Valdivia's open question (2013):

Problem 1 ([15, Problem 1]). Let \mathcal{A} be an algebra of subsets of Ω . Is it true that N-property of \mathcal{A} implies sN-property?

Note that the Nikodym–Dieudonné–Grothendieck stating that every σ -algebra \mathcal{S} of subsets of a set Ω has property N is a particular case of the following Valdivia's theorem.

Theorem 1 ([14, Theorem 2]). Each σ -algebra S of subsets of Ω has sN-property.

Following [7, Chapter 7, 35.1] a family $\{B_{m_1,m_2,...,m_p} : p, m_1, m_2, ..., m_p \in \mathbb{N}\}$ of subsets of A is an increasing web in A if $(B_{m_1})_{m_1}$ is an increasing covering of A and $(B_{m_1,m_2,...,m_p,m_{p+1}})_{m_{p+1}}$ is an increasing covering of $B_{m_1,m_2,...,m_p}$, for each $p, m_i \in \mathbb{N}$, $1 \leq i \leq p$. We will say that a set-algebra A of subsets of Ω has the web strong N-property (web-sN-property, in brief) if for each increasing web $\{\mathcal{B}_{m_1,m_2,...,m_p} : p, m_1, m_2, \ldots, m_p \in \mathbb{N}\}$ in A there exists a sequence $(n_i)_i$ in \mathbb{N} such that each $\mathcal{B}_{n_1,n_2,...,n_i}$ has sN-property, for each $i \in \mathbb{N}$.

Download English Version:

https://daneshyari.com/en/article/4613801

Download Persian Version:

https://daneshyari.com/article/4613801

Daneshyari.com