Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Decompositions of preduals of JBW and JBW* algebras $\stackrel{\Rightarrow}{\Rightarrow}$

Martin Bohata^a, Jan Hamhalter^a, Ondřej F.K. Kalenda^{b,*}

 ^a Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Mathematics, Technická 2, 166 27 Prague 6, Czech Republic
^b Charles University in Prague, Faculty of Mathematics and Physics, Department of Mathematical

Analysis, Sokolovská 86, 186 75 Praha 8, Czech Republic

ARTICLE INFO

Article history: Received 20 November 2015 Available online 24 August 2016 Submitted by B. Cascales

Keywords: Jordan algebra JBW-algebra Predual 1-Plichko space Weakly compactly generated space Projectional skeleton

ABSTRACT

We prove that the predual of any JBW*-algebra is a complex 1-Plichko space and the predual of any JBW-algebra is a real 1-Plichko space. I.e., any such space has a countably 1-norming Markushevich basis, or, equivalently, a commutative 1-projectional skeleton. This extends recent results of the authors who proved the same for preduals of von Neumann algebras and their self-adjoint parts. However, the more general setting of Jordan algebras turned to be much more complicated. We use in the proof a set-theoretical method of elementary submodels. As a byproduct we obtain a result on amalgamation of projectional skeletons.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

The aim of the present paper is to show that the predual of any JBW-algebra is 1-Plichko (i.e., it has a countably 1-norming Markushevich basis or, equivalently, it admits a commutative 1-projectional skeleton) and the same holds also for preduals of JBW^* -algebras. This extends previous results of the authors who showed in [4] the same statements on preduals of von Neumann algebras and their self-adjoint parts. JBW^* -algebras can be viewed as a generalization of von Neumann algebras, this class was introduced and studied in [10]; a JBW-algebra can be represented as the self-adjoint part of a JBW^* -algebra (see [10]). Precise definitions and a necessary background on these algebras are given in Section 2 below.

1-Plichko spaces form one of the largest classes of Banach spaces which admit a reasonable decomposition to separable pieces. This class and some related classes of Banach spaces together with the associated classes of compact spaces were thoroughly studied for example in [22,23,15]. The class of 1-Plichko spaces can be viewed as a common roof of previously studied classes of weakly compactly generated spaces [2], weakly

 $^{^{\}circ}$ Our research was supported in part by the grant GAČR P201/12/0290.

^{*} Corresponding author.

E-mail addresses: bohata@math.feld.cvut.cz (M. Bohata), hamhalte@math.feld.cvut.cz (J. Hamhalter), kalenda@karlin.mff.cuni.cz (O.F.K. Kalenda).

K-analytic Banach spaces [21], weakly countably determined (Vašák) spaces [24,20] and weakly Lindelöf determined spaces [3]. Examples of 1-Plichko spaces include L^1 spaces, order continuous Banach lattices, spaces C(G) for a compact abelian group G [16]; preduals of von Neumann algebras and their self-adjoint parts [4].

Let us continue by defining 1-Plichko spaces and some related classes. We will do it using the notion of a projectional skeleton introduced in [18]. If X is a Banach space, a *projectional skeleton* on X is an indexed system of bounded linear projections $(P_{\lambda})_{\lambda \in \Lambda}$ where Λ is an up-directed set such that the following conditions are satisfied:

(i) $\sup_{\lambda \in \Lambda} \|P_{\lambda}\| < \infty$,

- (ii) $P_{\lambda}X$ is separable for each λ ,
- (iii) $P_{\lambda}P_{\mu} = P_{\mu}P_{\lambda} = P_{\lambda}$ whenever $\lambda \leq \mu$,
- (iv) if (λ_n) is an increasing sequence in Λ , it has a supremum $\lambda \in \Lambda$ and $P_{\lambda}[X] = \overline{\bigcup_n P_{\lambda_n}[X]}$,
- (v) $X = \bigcup_{\lambda \in \Lambda} P_{\lambda}[X].$

The subspace $D = \bigcup_{\lambda \in \Lambda} P_{\lambda}^{*}[X^{*}]$ is called the subspace induced by the skeleton. If $||P_{\lambda}|| = 1$ for each $\lambda \in \Lambda$, the family $(P_{\lambda})_{\lambda \in \Lambda}$ is said to be 1-projectional skeleton. The skeleton $(P_{\lambda})_{\lambda \in \Lambda}$ is said to be commutative if $P_{\lambda}P_{\mu} = P_{\mu}P_{\lambda}$ for any $\lambda, \mu \in \Lambda$. A Banach space having a commutative (1-)projectional skeleton is called (1-)Plichko.

This is not the original definition used in [15,16] which says that X is (1-)Plichko if X^* admits a (1-)norming Σ -subspace. Let us recall that a subspace $D \subset X^*$ is r-norming $(r \ge 0)$ if the formula

$$|x| = \sup\{|x^*(x)| : x^* \in D, ||x^*|| \le 1\}$$

defines an equivalent norm on X for which $\|\cdot\| \leq r |\cdot|$.

Further, a subspace $D \subset X^*$ is a Σ -subspace of X^* if there is a linearly dense set $M \subset X$ such that

$$D = \{x^* \in X^* : \{m \in M : x^*(m) \neq 0\} \text{ is countable}\}.$$

It follows from [18, Proposition 21 and Theorem 27] that a norming subspace of X^* is a Σ -subspace of X^* if and only if it is induced by a commutative projectional skeleton, therefore our definitions are equivalent to the original ones.

Finally, recall that a Banach space X is called *weakly Lindelöf determined* (shortly WLD) if X^* is a Σ -subspace of itself or, equivalently, if X^* is induced by a commutative projectional skeleton in X.

Now we can formulate our main results. The following theorem extends [4, Theorems 1.1 and 1.4] to the more general setting of Jordan algebras. Precise definitions of the respective algebras are in the following section.

Theorem 1.1.

- Let *M* be any JBW*-algebra. Its predual *M*_{*} is a (complex) 1-Plichko space. Moreover, *M*_{*} is WLD if and only if *M* is σ-finite. In this case it is even weakly compactly generated.
- Let *M* be any JBW-algebra. Its predual *M*_{*} is a (real) 1-Plichko space. Moreover, *M*_{*} is WLD if and only if *M* is σ-finite. In this case it is even weakly compactly generated.

As a corollary we get the following extension of a result of U. Haagerup [13, Theorem IX.1] on preduals of von Neumann algebras. It follows immediately from Theorem 1.1 and the definition of projectional skeletons. A Banach space X is said to have *separable complementation property* if each countable subset of X is contained in some separable complemented subspace of X. Download English Version:

https://daneshyari.com/en/article/4613802

Download Persian Version:

https://daneshyari.com/article/4613802

Daneshyari.com