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We study a variant of the Rényi parking problem in which car length is repeatedly 
halved and determine the rate at which the remaining space decays.
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1. Introduction

Rényi modelled a long interval randomly jammed with cars of unit length. More precisely, each arriving 
car is parked at a location chosen according to uniform probability distribution over the set of available 
parking locations until no parking locations remain. The resulting gap lengths constitute a random variable 
with range (0, 1). The constant CR ≈ 0.747589 is the limit, as the interval length tends to infinity, of the 
proportion of the interval covered and was analytically determined [5]. This Rényi parking constant is scale 
invariant, in the sense that it holds for cars of any fixed length. Variations on Rényi’s parking problem 
consider higher dimensions, a discretised setting, or cars of mixed lengths. Modelling of physical processes, 
such as random sequential adsorption, frequently refer to the idealised Rényi model (see for example [3,4,6]
and references therein). Here, we consider another variation. For our purposes it is more convenient to assume 
we have initially jammed with cars of length 2 leaving us with gaps distributed according to a probability 
distribution X1 with range (0, 2). In our formulation, the next step is that these X1-distributed intervals are 
jammed by cars of length 1 to give a new gap distribution X2 with range (0, 1). We then introduce and jam 
with cars of length 1

2 to get X3 with range (0, 12 ), then cars of length 1
4 and so on. It is clear that our initial 

intervals are exhausted by this process. Our motivating question is that of determining the rate of exhaustion.
We will show that, if Ln denotes the expected length of interval which remains uncovered after n stages, 
then Ln+1/Ln tends to a finite limit R 1

2
≈ 0.61. We will numerically calculate this limit with error bounds 

and also see that the limiting behaviour is largely independent of the initial probability distribution X1. 

* Corresponding author.
E-mail addresses: mackey@maths.ucd.ie (M. Mackey), wayne.sullivan@ucd.ie (W.G. Sullivan).

http://dx.doi.org/10.1016/j.jmaa.2016.08.025
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.08.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:mackey@maths.ucd.ie
mailto:wayne.sullivan@ucd.ie
http://dx.doi.org/10.1016/j.jmaa.2016.08.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.08.025&domain=pdf


M. Mackey, W.G. Sullivan / J. Math. Anal. Appl. 446 (2017) 38–61 39

In particular, X1 need not be the Rényi distribution outlined above. Proof of these facts requires finding 
a limiting distribution X to the sequence {Xn} and for this we need to normalise at each stage. Integral 
equations governing the evolution of {Xn}, their corresponding densities {fn}, and steady state analogues 
will be found. We approach the solution to these equations by considering an infinite dimensional eigenvalue 
problem. Numerical analysis with error bounds shows that there is a unique eigenvalue of maximum absolute 
value. Convergence of the iterates of the linear system to the associated eigenspace yields convergence of 
the sequence of probability densities.

The paper is laid out as follows. In Section 2, we consider the sequence of cumulative probability distribu-
tions that arise as a result of the physical process of jamming with cars of fixed length at each stage before 
halving the car length for the next stage. This yields an integral equation relating the distribution at Stage 
n + 1 to that at Stage n. We deduce from this the evolution equation in the case of a probability density 
which naturally leads to an integral equation governing any probability density which is a fixed point of this 
process. From this, we observe functional properties of any such fixed point which is sufficiently regular.

In Section 3, we use series representations of the iterated sequence of probability densities in order to 
recast the integral formulation of density evolution as an infinite linear system. The sought-after asymptotic 
decay rate R 1

2
is seen to be one half of the spectral radius of the infinite matrix and spectral properties of 

this matrix, A, are explored.
Following mention of floating point concerns in Section 4, careful numerical analysis of a similarity 

transformation of the matrix A is provided in Section 5, based on Gershgorin’s Theorem with error and 
truncation estimates. Using the same similarity transformation, we deduce a convergence result for iteration 
of �1 vectors under A, corresponding to convergence of our probability densities.

Finally, in Section 6, we consider convergence for more general initial distributions without density.

2. The model

Let N be the large number of gaps in a long interval of length L formed, say, by parking cars of length 2 
until jamming occurs. The gap lengths form a random variable, X1, with range (0, 2). The expected number 
of these gaps which have length greater than 1 is NP (X1 > 1). Each of these has a car of length 1 placed 
in it, randomly, by uniform distribution over the set of available locations. This creates 2NP (X1 > 1) new 
gaps, referred to as Stage 2 gaps, of length in (0, 1) and removes NP (X1 > 1) Stage 1 gaps of length in (1, 2). 
The length of one of these 2NP (X1 > 1) Stage 2 gaps is a random variable with range (0, 1) which we 
call Y . The distribution of all N + NP (X1 > 1) gaps, whose length ranges over (0, 1), will be represented 
by the random variable X̃2 which we normalise to X2 = 2X̃2 with range (0, 2).

We calculate the probability distribution of X̃2. Observe that each gap at this point may have existed at 
the first stage or have been created on introduction of cars at the second stage. We refer to these as Stage 1 
gaps and Stage 2 gaps respectively. For t ∈ (0, 1),

P (X̃2 < t) = P (gap from Stage 1)P (X1 < t|X1 < 1) + P (gap from Stage 2)P (Y < t). (2.1)

Clearly,

P (gap from Stage 1) = N −NP (X1 > 1)
N + NP (X1 > 1) = 1 − C1

1 + C1

where C1 = P (X1 > 1) and

P (gap from Stage 2) = 2C1

1 + C1
.
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