Some properties of the difference between the Ramanujan constant and beta function

Song-Liang Qiu*, Xiao-Yan Ma, Ti-Ren Huang
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

A R T I C L E I N F O

Article history:

Received 12 June 2016
Available online 29 August 2016
Submitted by B.C. Berndt

Keywords:

The Ramanujan constant
Beta function
Monotonicity and convexity
Functional inequalities
Power series
The Riemann zeta function

Abstract

The authors present the power series expansions of the function $R(a)-B(a)$ at $a=0$ and at $a=1 / 2$, show the monotonicity and convexity properties of certain familiar combinations defined in terms of polynomials and the difference between the so-called Ramanujan constant $R(a)$ and the beta function $B(a) \equiv B(a, 1-a)$, and obtain asymptotically sharp lower and upper bounds for $R(a)$ in terms of $B(a)$ and polynomials. In addition, some properties of the Riemann zeta function $\zeta(n)$, $n \in \mathbb{N}$, and its related sums are derived.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For real numbers $x, y>0$, the gamma, beta and psi functions are defined as

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}, \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} \tag{1.1}
\end{equation*}
$$

respectively. (Cf. $[1,3,12,13]$.) Let $\gamma=0.5772156649 \cdots$ be the Euler constant. The so-called Ramanujan constant $R(a)$ is defined by

$$
\begin{equation*}
R(a) \equiv-2 \gamma-\psi(a)-\psi(1-a) \quad \text { for } \quad a \in(0,1) \tag{1.2}
\end{equation*}
$$

which is the special case of the following function of two parameters a and b

$$
\begin{equation*}
R(a, b) \equiv-2 \gamma-\psi(a)-\psi(b) \quad \text { for } \quad a, b \in(0, \infty) \tag{1.3}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.08.043
0022-247X/© 2016 Elsevier Inc. All rights reserved.
when $b=1-a$. By $[1,6.3 .4], R(1 / 2)=\log 16$, and by the symmetry, we can sometimes assume that $a \in(0,1 / 2]$ in (1.2).

For $a, b, c \in \mathbb{R}$ with $c \neq 0,-1,-2, \ldots$, the Gaussian hypergeometric function is defined by

$$
F(a, b ; c ; x)={ }_{2} F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n) n!} x^{n}, x \in(-1,1),
$$

where (a, n) denotes the shifted factorial function $(a, n)=a(a+1) \cdots(a+n-1)$ for $n \in \mathbb{N}$, and $(a, 0)=1$ for $a \neq 0 . F(a, b ; c ; x)$ is said to be zero-balanced if $c=a+b$. The asymptotic properties of $F(a, b ; a+b ; x)$ as $x \rightarrow 1$ are related to $B(a, b)$ and $R(a, b)$. (See [1, 15.3.10], [2, Theorem $1.3 \& 1.4]$ and [6,7,11].) For example, $F(a, b ; a+b ; x)$ satisfies the following S. Ramanujan's asymptotic relation (cf. [2, (1.6)])

$$
\begin{equation*}
B(a, b) F(a, b ; a+b ; x)+\log (1-x)=R(a, b)+O((1-x) \log (1-x)), x \rightarrow 1 \tag{1.4}
\end{equation*}
$$

by which

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} \frac{F(a, b ; a+b ; x)}{\log [1 /(1-x)]}=\frac{1}{B(a, b)} . \tag{1.5}
\end{equation*}
$$

(See also [5, Theorem 2.1.3].) For $a \in(0,1 / 2], r \in[0,1]$ and $r^{\prime}=\sqrt{1-r^{2}}$, let $\mathscr{K}_{a}(r)$ and $\mathscr{K}_{a}^{\prime}(r)$ denote the generalized elliptic integrals of the first kind, which are defined by

$$
\mathscr{K}_{a}(r)=\frac{\pi}{2} F\left(a, 1-a ; 1 ; r^{2}\right) \quad \text { and } \quad \mathscr{K}_{a}^{\prime}(r)=\mathscr{K}_{a}\left(r^{\prime}\right) \quad \text { for } \quad r \in(0,1), \mathscr{K}_{a}(0)=\pi / 2, \mathscr{K}_{a}(1)=\infty .
$$

Then, by (1.4),

$$
\begin{equation*}
B(a) \mathscr{K}_{a}(r)-\pi \log \frac{\mathrm{e}^{R(a) / 2}}{r^{\prime}}=O\left(\left(r^{\prime}\right)^{2} \log r^{\prime}\right), r \rightarrow 1 \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
B(a) \equiv B(a, 1-a)=\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin (\pi a)} . \tag{1.7}
\end{equation*}
$$

For $a \in(0,1 / 2]$, define the homeomorphisms $\mu_{a}:(0,1) \rightarrow(0, \infty)$ and $\varphi_{K}^{a}:[0,1] \rightarrow[0,1]$ by

$$
\mu_{a}(r) \equiv \frac{\pi}{2 \sin (\pi a)} \frac{\mathscr{K}_{a}^{\prime}(r)}{2 \mathscr{K}_{a}(r)}=\frac{B(a) \mathscr{K}_{a}^{\prime}(r)}{2 \mathscr{K}_{a}(r)}
$$

and

$$
\varphi_{K}^{a}(r) \equiv \mu_{a}^{-1}\left(\mu_{a}(r) / K\right), \varphi_{K}^{a}(0)=\varphi_{K}^{a}(1)-1=0,
$$

respectively. Then the following Ramanujan's generalized modular equation with signature $1 / a$ and order (or degree) p

$$
\frac{F\left(a, 1-a ; 1 ; 1-s^{2}\right)}{F\left(a, 1-a ; 1 ; s^{2}\right)}=p \frac{F\left(a, 1-a ; 1 ; 1-r^{2}\right)}{F\left(a, 1-a ; 1 ; r^{2}\right)}, 0<r<1
$$

and its solution s can be written as

$$
\mu_{a}(s)=p \mu_{a}(r) \quad \text { and } \quad s=\varphi_{1 / p}^{a}(r)
$$

respectively.

https://daneshyari.com/en/article/4613807

Download Persian Version:

https://daneshyari.com/article/4613807

Daneshyari.com

[^0]: th This research is supported by the NSF of PR China (Grant No. 11171307, No. 11401531).

 * Corresponding author.

 E-mail address: sl_qiu@zstu.edu.cn (S.-L. Qiu).

