
The Journal of Systems and Software 114 (2016) 69–81

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Quality assurance in software ecosystems: A systematic literature

mapping and research agenda

Jakob Axelsson∗, Mats Skoglund

Software and Systems Engineering Laboratory, Swedish Institute of Computer Science (SICS), PO Box 1263, SE-164 29 Kista, Sweden

a r t i c l e i n f o

Article history:

Received 12 March 2015

Revised 11 December 2015

Accepted 11 December 2015

Available online 18 December 2015

Keywords:

Software ecosystems

Quality

Verification

Testing

a b s t r a c t

Software ecosystems are becoming a common model for software development in which different ac-

tors cooperate around a shared platform. However, it is not clear what the implications are on software

quality when moving from a traditional approach to an ecosystem, and this is becoming increasingly

important as ecosystems emerge in critical domains such as embedded applications. Therefore, this pa-

per investigates the challenges related to quality assurance in software ecosystems, and identifies what

approaches have been proposed in the literature. The research method used is a systematic literature

mapping, which however only resulted in a small set of six papers. The literature findings are comple-

mented with a constructive approach where areas are identified that merit further research, resulting in

a set of research topics that form a research agenda for quality assurance in software ecosystems. The

agenda spans the entire system life-cycle, and focuses on challenges particular to an ecosystem setting,

which are mainly the results of the interactions across organizational borders, and the dynamic system

integration being controlled by the users.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software ecosystems are an increasingly popular model for soft-

ware development and the associated business aspects. Tradition-

ally, companies work in a fairly closed setting in which software

systems are provided as more or less monolithic entities. In a

software ecosystem, this changes to an open environment where

a community of developers from different organizations gather

around an open or semi-open platform, and thrive from each

other in a coopetition. This gives a potential for numerous ben-

efits, including improved customer offers through the use of the

innovation potential in the ecosystem (Iansiti and Levien, 2004)

and reduced complexity of development by allowing composabil-

ity (Bosch and Bosch-Sijtsema, 2010a).

Many of the examples of successful software ecosystems come

from the IT domain, and include general applications such as

PC operating systems, mobile phone apps, etc. (Bosch, 2009; van

der Schuur et al., 2011). There are also initial signs of software

ecosystems emerging in more critical applications, based on em-

bedded systems, which are to a much higher degree tailor-made

for a specific purpose (Eklund and Bosch, 2014). For all software

products, quality is of high importance, and for critical embed-

ded systems, on which the lives of people may depend, it is a

∗ Corresponding author. Tel.: +46 72 734 29 52.

E-mail address: jakob.axelsson@sics.se (J. Axelsson).

non-negotiable characteristic. For some embedded systems, certain

aspects of quality are even formal requirements that must be ful-

filled to obtain certification from authorities.

Our current research deals with ecosystems for federated em-

bedded systems, a concept where traditional embedded systems

can be dynamically extended with plug-in software components

(Axelsson and Kobetski, 2013) which can be provided by exter-

nal developers. In a previous case study around the characteristics

of such an ecosystem, quality assurance was identified as one of

the most important factors (Axelsson and Kobetski, 2014; Axelsson

et al., 2014), and some indication was given about important fac-

tors that contribute to quality in the embedded domain. However,

according to Manikas and Hansen (2013) and Barbosa et al. (2013),

there appears to be a general lack of knowledge about the relation

between quality assurance and software ecosystems.

The purpose of this paper is therefore to: (a) provide an ini-

tial characterization of the state-of-the-art in the area, as well as

(b) provide directions for further research needs in the form of a

research agenda for the field.

To investigate the relationship between quality assurance and

software ecosystems scientifically, it is necessary to first provide

some clarity what is meant by these two rather broad terms. Thus,

the following subsections deal with defining the terms software

ecosystems and quality assurance. This also provides a theoreti-

cal framework that defines the scope of the study. After this, a

more exact definition of the research questions in the paper will

be given, together with an overview of the remainder of the paper.

http://dx.doi.org/10.1016/j.jss.2015.12.020

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.020&domain=pdf
mailto:jakob.axelsson@sics.se
http://dx.doi.org/10.1016/j.jss.2015.12.020


70 J. Axelsson, M. Skoglund / The Journal of Systems and Software 114 (2016) 69–81

 

So
ft

w
ar

e 
ex

te
ns

io
n

So
ft

w
ar

e 
ex

te
ns

io
n

So
ft

w
ar

e 
ex

te
ns

io
n

Platform

System instance

In
fr

as
tr

uc
tu

re

Keystone

Niche
player

User

Fig. 1. Technical and organizational concepts in a software ecosystem.

1.1. Definition of software ecosystems

Although most of the work on software ecosystems use the

term in similar ways, there is no definition which is universally

agreed upon. In a recent systematic literature review (Manikas and

Hansen, 2013), it is found that 44% of the papers do not state any

definition at all. Among those that do provide a definition, the

most common one (27%) used is the one by Jansen et al., who de-

fine a software ecosystem as “a set of businesses functioning as

a unit and interacting with a shared market for software and ser-

vices, together with the relationships among them. These relation-

ships are frequently under-pinned by a common technological plat-

form or market and operate through the exchange of information,

resources and artifacts” (Jansen et al., 2009).

Another commonly used definition (14% of the papers in the

above study) is provided by Bosch and Bosch-Sijtsema: “A software

ecosystem consists of a software platform, a set of internal and ex-

ternal developers and a community of domain experts in service

to a community of users that compose relevant solution elements

to satisfy their needs” (Bosch and Bosch-Sijtsema, 2010a, b).

Based on their review, Manikas and Hansen (2013) identify

common elements in the various definitions, and propose the fol-

lowing definition, which is also the one we will use in this paper:

Definition. A software ecosystem is the interaction of a set of ac-

tors on top of a common technological platform that results in a

number of software solutions or services.

The actors in the ecosystem are commonly divided into a key-

stone and a set of niche players (Iansiti and Levien, 2004). In the

conceptual model used in the analysis in this paper, the keystone

is responsible for developing the platform and also plays an im-

portant role in the success of the ecosystem through orchestration.

The niche players develop software extensions which execute on top

of the platform, and the extensions can be added by the user in

different combinations. A system instance, whose quality we are in-

terested in, thus consists of a platform combined with a set of dif-

ferent extension components (Jansen and van Capelleveen, 2013).

To support the interaction between the actors, and between actors

and systems, an infrastructure is needed. All these are illustrated

in Fig. 1. (Some ecosystems may not map easily to this conceptual

model, and in those cases, other challenges may be present when

it comes to quality assurance.)

1.2. Definition of quality and quality assurance

The focus of this paper is quality assurance, but to able to de-

fine that, a discussion of quality in general is needed. Whereas

software ecosystems are a relatively new phenomenon, product

quality has been discussed for many decades. Already in the 1930s,

in his effort to characterize quality and provide quality control

mechanisms, Shewhart identified that “there are two common as-

pects of quality: one of them has to do with the consideration of

the quality of a thing as an objective reality independent of the

existence of man. The other has to do with what we think, feel or

sense as a result of the objective reality. In other words, there is a

subjective side of quality” (Shewart, 1931). In software engineering,

a similar difference was much later captured in a description of

validation vs. verification, where validation checks if we are build-

ing the right product, and verification if we are building the prod-

uct right (Boehm, 1979). Both these definitions concern primarily

how the product is performing during its operational use, and this

is also the emphasis of this paper, where we focus on how well

the system under operation fulfills the needs or requirements as

defined (implicitly or explicitly) by various stakeholders.

For software systems, the word “quality” is however often used

in a different and broader sense, which also covers many aspects

related to the efficiency of development, maintenance, evolution,

etc. of the system. The well-established quality standard ISO 9126

and its follower ISO 25010 are examples of this, where two of the

quality characteristics are maintainability, defined as “the capabil-

ity of the software product to be modified”, and portability, de-

fined as “the capability of the software product to be transferred

from one environment to another” (ISO/IEC, 2001; ISO/IEC, 2011).

Those are aspects which are beyond the primary scope of this pa-

per, and instead our focus is quality in use, even though all aspects

are sometimes intertwined with each other.

In addition, much research related to software ecosystems has a

relation to software architecture, a field where it is common prac-

tice to discuss about the “quality attributes” of an architecture.

The architecture is in itself an abstraction of the real product, and

not all quality in use aspects are considered since they may relate

more to details at a lower level than to the architecture. Also, the

quality attributes of the architecture usually go beyond the quality

in use, and emphasize how to manage the product during its de-

velopment and maintenance phases, in order to reduce complexity.

The definition of quality we will use in this paper is as follows:

Definition. The quality of a software product is how the system

under operation fulfills the needs and requirements as defined (im-

plicitly or explicitly) by its stakeholders.

Given this definition of quality, quality assurance can be defined

as follows:

Definition. Quality assurance is the set of activities carried out to

ensure that the system has sufficient quality.

This includes activities for ensuring that the software product

was designed to be fit for its intended purpose, i.e. validation, but

also that mistakes in the implementation are eliminated, i.e. veri-

fication. However, quality assurance cannot be seen as an isolated

activity, but rather as a set of activities that take place during dif-

ferent phases of the product’s life-cycle. This life-cycle can be de-

scribed in many ways, and one example is provided in the standard

ISO12207 (ISO/IEC/IEEE, 2008) for software life-cycle processes.

This standard defines four high-level process areas, namely agree-

ment processes; organizational project-enabling processes; project

processes; and technical processes, with sub-processes defined for

each of them. For example, the technical processes include activ-

ities such as requirements definition; system architectural design;

implementation; integration; and operations. Quality assurance re-

lated activities can occur in any of these processes.

Product quality has a relationship with the much broader con-

cept of ecosystem health used by many software ecosystem re-

searchers. This concept is defined as the ability of the ecosystem

to endure and remain variable and productive over time (Manikas

and Hansen, 2013), or alternatively as longevity and a propensity



Download English Version:

https://daneshyari.com/en/article/461381

Download Persian Version:

https://daneshyari.com/article/461381

Daneshyari.com

https://daneshyari.com/en/article/461381
https://daneshyari.com/article/461381
https://daneshyari.com

