Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Extremes of $\alpha(t)$ -locally stationary Gaussian processes with non-constant variances

Long Bai

Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 23 June 2016 Available online 1 September 2016 Submitted by U. Stadtmueller

 $\label{eq:keywords:} \begin{array}{l} \mbox{Fractional Brownian motion} \\ \alpha(t)\mbox{-locally stationary} \\ \mbox{Pickands constants} \\ \mbox{Gaussian process} \end{array}$

ABSTRACT

With motivation from [9], in this paper we derive the exact tail asymptotics of $\alpha(t)$ -locally stationary Gaussian processes with non-constant variance functions. We show that some certain variance functions lead to qualitatively new results. © 2016 Elsevier Inc. All rights reserved.

1. Introduction and main result

For X(t), $t \in [0,T]$, T > 0 a centered stationary Gaussian process with unit variance and continuous sample paths Pickands derived in [20] that

$$\mathbb{P}\left\{\sup_{t\in[0,T]}X(t)>u\right\}\sim T\mathcal{H}_{\alpha}a^{1/\alpha}u^{2/\alpha}\mathbb{P}\left\{X(0)>u\right\},\quad u\to\infty,$$
(1)

provided that the correlation function r satisfies

$$1 - r(t) \sim a |t|^{\alpha}, \quad t \downarrow 0, \quad a > 0, \quad \text{and } r(t) < 1, \ \forall \ t \neq 0,$$
 (2)

with $\alpha \in (0,2]$ (~ means asymptotic equivalence when the argument tends to 0 or ∞). Here the classical Pickands constant \mathcal{H}_{α} is defined by

$$\mathcal{H}_{\alpha} = \lim_{T \to \infty} T^{-1} \mathbb{E} \left\{ \sup_{t \in [0,T]} e^{\sqrt{2}B_{\alpha}(t) - t^{\alpha}} \right\},\,$$

E-mail address: Long.Bai@unil.ch.

http://dx.doi.org/10.1016/j.jmaa.2016.08.056 0022-247X/© 2016 Elsevier Inc. All rights reserved.

CrossMark

where $B_{\alpha}(t), t \ge 0$ is a standard fractional Brownian motion with Hurst index $\alpha/2 \in (0, 1]$, see [20,21,5,12, 10,14,7,23,11,13,6,15] for various properties of \mathcal{H}_{α} .

The deep contribution [3] introduced the class of locally stationary Gaussian processes with index α , i.e., a centered Gaussian process $X(t), t \in [0,T]$ with a constant variance function, say equal to 1, and correlation function satisfying

$$r(t,t+h) = 1 - a(t)|h|^{\alpha} + o(|t|^{\alpha}), \ h \to 0,$$

uniformly with respect to $t \in [0, T]$, where $\alpha \in (0, 2]$ and a(t) is a bounded, strictly positive and continuous function.

Clearly, the class of locally stationary Gaussian processes includes the stationary ones. It allows for some minor fluctuations of dependence at t and at the same time keeps stationary structure at the local scale. See [3,4,18] for studies on the locally stationary Gaussian processes with index α .

In [9] the tail asymptotics of the supremum of $\alpha(t)$ -locally stationary Gaussian processes are investigated. Such processes and random fields are of interest in various applications, see [9] and the recent contributions [2,16,17]. Following the definition in [9], a centered Gaussian process $X(t), t \in [0, T]$ with continuous sample paths and unit variance is $\alpha(t)$ -locally stationary if the correlation function $r(\cdot, \cdot)$ satisfies the following conditions:

(i) $\alpha(t) \in C([0,T])$ and $\alpha(t) \in (0,2]$ for all $t \in [0,T]$;

- (ii) $a(t) \in C([0,T])$ and $0 < \inf\{a(t) : t \in [0,T]\} \le \sup\{a(t) : t \in [0,T]\} < \infty;$
- (iii) uniformly for $t \in [0, T]$

$$1 - r(t, t+h) = a(t)|h|^{\alpha(t)} + o(|h|^{\alpha(t)}), \ h \to 0,$$

where $f(t) \in C(\mathcal{T})$ means that f(t) is continuous on $\mathcal{T} \subset \mathbb{R}$.

In this paper, we shall consider the case that the variance function $\sigma^2(t) = Var(X(t))$ is not constant, assuming instead that:

(iv) $\sigma(t)$ attains its maximum equal to 1 over [0, T] at the unique point $t_0 \in [0, T]$ and for some constants $c, \gamma > 0$,

$$\frac{1}{\sigma(t)} = 1 + c e^{-|t-t_0|^{-\gamma}} (1+o(1)), \quad t \to t_0.$$

A crucial assumption in our result is that similar to the variance function, the function $\alpha(t)$ has a certain behavior around the extreme point t_0 . Specifically, as in [9] we shall assume:

(v) there exist $\beta, \delta, b > 0$ such that

$$\alpha(t+t_0) = \alpha(t_0) + b|t|^\beta + o(|t|^{\beta+\delta}), \quad t \to 0.$$

Remark 1.1. We remark that t_0 does not need to be the unique point such that $\alpha(t)$ is minimal on [0, T], which is different from [9]. For instance, $[0, T] = [0, 2\pi]$, $t_0 = 0$ and $\alpha(t) = 1 + \frac{1}{2}\sin(t)$, then 0 is not the minimum point of $\alpha(t)$ over $[0, 2\pi]$ which means assumptions about $\alpha(t)$ in [9] are not satisfied but assumption (v) here is satisfied with

$$\alpha(t) = 1 + \frac{1}{2}|t| + o(|t|^{\frac{3}{2}}), \ t \to 0.$$

Below we set $\alpha := \alpha(t_0)$, $a := a(t_0)$ and write Ψ for the survival function of an N(0,1) random variable. Further, define $0^a = \infty$ for a < 0. Our main result is stated in the next theorem. Download English Version:

https://daneshyari.com/en/article/4613813

Download Persian Version:

https://daneshyari.com/article/4613813

Daneshyari.com