Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Tauberian convolution operators acting on $L_1(G)$

Liliana Cely^a, Elói M. Galego^a, Manuel González^{b,*}

 ^a Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
^b Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander,

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain

ARTICLE INFO

Article history: Received 12 May 2016 Available online 1 September 2016 Submitted by G. Corach

Keywords: Banach space Multiplier Tauberian operator Convolution operator

1. Introduction

ABSTRACT

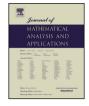
We study the convolution operators T_{μ} which are tauberian as operators acting on the group algebras $L_1(G)$, where G is a locally compact abelian group and μ is a complex Borel measure on G. We show that these operators are invertible when G is non-compact, and that they are Fredholm when they have closed range and G is compact. In the remaining case, when G is compact and $R(T_{\mu})$ is not assumed to be closed, we prove that T_{μ} is Fredholm when the singular continuous part of μ with respect to the Haar measure on G is zero.

© 2016 Elsevier Inc. All rights reserved.

Tauberian operators, introduced by Kalton and Wilansky in [8], have found many applications in Banach space theory (see Chapter 5 of [5]). The tauberian operators from $L_1(\mu)$ into a Banach space were studied in [4], where several characterizations in terms of disjoint sequences were obtained, and the problem whether all tauberian operators $T : L_1(\mu) \to L_1(\mu)$ are upper semi-Fredholm (have closed range and finite dimensional kernel) was raised. A counterexample to this problem was obtained in [7]: there exists a tauberian operator acting on $L_1(0, 1)$ with non-closed range, but it is not known if there exists a counterexample with closed range.

Here we consider the mentioned problem for convolution operators T_{μ} acting on the Banach algebra $L_1(G)$, where G is a locally compact abelian (LCA for short) group. We show that the tauberian operators T_{μ} are invertible when the group G is non-compact, and that they are Fredholm when G is compact and they have closed range or the singular continuous part (with respect to the Haar measure on G) of the associated measure μ is zero. These results provide new characterizations of the Fredholm multipliers of the group algebras $L_1(G)$ described in [1, Theorem 5.97].

* Corresponding author.



[☆] Supported in part by MICINN (Spain), Grant MTM2013-45643.

E-mail addresses: mlcelyp@unal.edu.co (L. Cely), eloi@ime.usp.br (E.M. Galego), manuel.gonzalez@unican.es (M. González).

Throughout the paper X and Y are (complex) Banach spaces, and G is a locally compact abelian group. We consider (continuous linear) operators $T: X \to Y$, and we denote by R(T) and N(T) the range and the kernel of T. An operator $T: X \to Y$ is *tauberian* if the second conjugate $T^{**}: X^{**} \to Y^{**}$ satisfies $T^{**-1}(Y) = X$, and the operator T is *weakly compact* if $T^{**}(X^{**}) \subset Y$. The properties of being tauberian and being weakly compact are "opposite", and given $T: X \to Y$ tauberian and $K: X \to Y$ weakly compact, T + K tauberian.

An operator $T: X \to Y$ is upper semi-Fredholm if it has closed range and finite dimensional kernel, and T is Fredholm if it has closed finite codimensional range and finite dimensional kernel. Upper semi-Fredholm operators are tauberian [5, Theorem 2.1.5], and from our point of view can be considered as "trivial" tauberian operators.

We denote by G = (G, +, 0) an infinite LCA group, and by m the Haar measure on G. Moreover $L_1(G)$ is the space of m-integrable complex functions on G endowed with the L_1 -norm $\|\cdot\|_1$, and M(G) denotes the space of complex Borel measures on G endowed with the variation norm. Note that $L_1(G)$ can be identified with the subspace of those $\mu \in M(G)$ that are absolutely continuous with respect to m by associating to $f \in L_1(G)$ the Borel measure m_f on G defined by $m_f(A) = \int_A f(x) dm(x)$. The space $L_1(G)$ with the convolution $(f \star g)(x) = \int_G f(x - y)g(y) dm(y)$ is a commutative Banach algebra.

Given $\mu \in M(G)$ and $f \in L_1(G)$ the expression $(\mu \star f)(x) = \int_G f(x-y)d\mu(y)$ defines $\mu \star f \in L_1(G)$ satisfying $\|\mu \star f\|_1 \le \|\mu\| \cdot \|f\|_1$. Thus for every $\mu \in M(G)$ we obtain a *convolution operator* T_μ on $L_1(G)$ defined by $T_\mu f = \mu \star f$, and satisfying $\|T_\mu\| = \|\mu\|$. Moreover, given $\mu, \nu \in M(G)$, the convolution of measures $\mu \star \nu \in M(G)$ is commutative [11]. Therefore $T_{\mu\star\nu} = T_\mu T_\nu = T_\nu T_\mu$.

For each $r \in G$ the translation operator T_r on $L_1(G)$, defined by $(T_r f)(x) = f(x - r)$, is a bijective isometry on $L_1(G)$. The convolution operators can be characterized as those operators $T : L_1(G) \to L_1(G)$ that commute with translations $(T_r T = TT_r \text{ for each } r \in G)$ [9, Theorem 0.1.1]. Note that T_r is the convolution operator associated to the unit measure δ_r concentrated at $\{r\}$.

Let Γ denote the dual group of G. Given $f \in L_1(G)$ and $\mu \in M(G)$, the Fourier transform $\hat{f} : \Gamma \to \mathbb{C}$ of f and the Fourier–Sieltjes transform $\hat{\mu} : \Gamma \to \mathbb{C}$ of μ are defined by $\hat{f}(\gamma) = \int_G f(x)\gamma(-x)dm(x)$ and $\hat{\mu}(\gamma) = \int_G \gamma(-x)d\mu(x)$.

For basic results on Fredholm theory, tauberian operators and Fourier analysis we refer to [1,5] and [11].

2. Preliminary results

Given $f \in L_1(\mu)$, we denote $\operatorname{supp}(f) = \{t : f(t) \neq 0\}$. We say that a sequence (f_n) in $L_1(\mu)$ is disjoint if $\mu(\operatorname{supp}(f_k) \cap \operatorname{supp}(f_l)) = 0$ for $k \neq l$.

The following result was proved in [4] (see also [5, Chapter 4]) when μ is a non-atomic finite measure, but the arguments given there are valid when μ is σ -finite.

Theorem 2.1. [4, Theorems 2 and 6] Let μ be a σ -finite measure. For an operator $T : L_1(\mu) \to Y$ the following assertions are equivalent:

- (1) T is tauberian;
- (2) $\liminf_{n\to\infty} ||Tf_n|| > 0$ for every disjoint normalized sequence (f_n) in $L_1(\mu)$;
- (3) there exists a number r > 0 such that $\liminf_{n \to \infty} ||Tf_n|| > r$ for every disjoint normalized sequence (f_n) in $L_1(\mu)$;
- (4) $\liminf_{n\to\infty} ||Tf_n|| > 0$ for every normalized sequence (f_n) in $L_1(\mu)$ satisfying $\lim_{n\to\infty} \mu(\operatorname{supp}(f_n)) = 0$.

The structure of convolution operators with closed range was described by Host and Parreau.

Theorem 2.2. [6, Théorème 1] Let G be a LCA group and let $\mu \in M(G)$. Then the convolution operator T_{μ} has closed range if and only if $\mu = \nu \star \xi$, where $\nu, \xi \in M(G), \nu$ is invertible and ξ is idempotent.

Download English Version:

https://daneshyari.com/en/article/4613816

Download Persian Version:

https://daneshyari.com/article/4613816

Daneshyari.com