Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On rational matrix exact covering systems of \mathbb{Z}^n and its applications to Ramanujan's forty identities

Zhu Cao^a, Yong Hu^{b,*}

^a Department of Mathematics, Kennesaw State University, Marietta, GA 30060, USA
 ^b School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, PR China

ARTICLE INFO

Article history: Received 20 December 2015 Available online 31 August 2016 Submitted by B.C. Berndt

Keywords: Covering systems q-series Theta functions Rogers–Ramanujan functions

ABSTRACT

For a nonsingular integer matrix B, the set of cosets of the quotient module $\mathbb{Z}^n/B\mathbb{Z}^n$ forms an exact covering system (ECS) of \mathbb{Z}^n . In this paper, we use the Smith normal form to obtain another type of matrix ECS with rational entries which we call rational matrix ECS. Using rational matrix ECS of \mathbb{Z}^2 , we prove eight identities in Ramanujan's list of forty identities for the Rogers–Ramanujan functions, as well as some other identities.

© 2016 Elsevier Inc. All rights reserved.

1. Matrix ECS

A set of congruences $a_i \pmod{n_i}$ with $1 \le i \le k, i \in \mathbb{Z}$ is called a covering system of \mathbb{Z} if every integer y satisfies $y \equiv a_i \pmod{n_i}$ for at least one value of i. A covering system in which each integer is covered by only one congruence is called an exact covering system (ECS).

We can extend the idea of ECS to \mathbb{Z}^n . Specifically, we focus on the structure of the quotient module $\mathbb{Z}^n/B\mathbb{Z}^n$, for a nonsingular $n \times n$ integer matrix B. For $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^n$, we define $\mathbf{a} \equiv \mathbf{b} \pmod{B}$ if and only if $\mathbf{a} - \mathbf{b} \in B\mathbb{Z}^n$. Using the Smith normal form, in [6], M. Fiol proved the following result.

Theorem 1.1. For a given nonsingular $n \times n$ matrix B, the quotient group

 $\mathbb{Z}^n/B\mathbb{Z}^n \simeq \mathbb{Z}/s_1\mathbb{Z} \times \mathbb{Z}/s_2\mathbb{Z} \times \cdots \times \mathbb{Z}/s_n\mathbb{Z},$

where $s_1|s_2|\cdots|s_n$ are the invariant factors of matrix *B*. Therefore, $|\mathbb{Z}^n/B\mathbb{Z}^n| = s_1s_2\cdots s_n = |\det B|$. Moreover, $\mathbb{Z}^n/B\mathbb{Z}^n$ is cyclic if and only if $s_{n-1} = 1$, or equivalently $s_n = |\det B|$.

* Corresponding author.

E-mail addresses: zcao@kennesaw.edu (Z. Cao), yhu@hust.edu.cn (Y. Hu).

http://dx.doi.org/10.1016/j.jmaa.2016.08.051

⁰⁰²²⁻²⁴⁷X/© 2016 Elsevier Inc. All rights reserved.

The quotient group $\mathbb{Z}^n/B\mathbb{Z}^n$ has exactly $|\det B|$ elements. Let $|\det B| = k$. Taking coset representatives c_i from each equivalent class, we obtain a matrix ECS of \mathbb{Z}^n as

$$\bigcup_{i=0}^{k-1} \{B\mathbb{Z}^n + c_i\}.$$

The matrix ECS can be used to regroup multiple summations. Let $f(\mathbf{x})$ be a complex-valued multivariable function. Provided that the summation converges absolutely, the equality

$$\sum_{\mathbf{x}\in\mathbb{Z}^n} f(\mathbf{x}) = \sum_{i=0}^{k-1} \sum_{\mathbf{y}\in\mathbb{Z}^n} f(B\mathbf{y} + c_i)$$
(1.1)

holds.

We are more interested in ECS with simple structures. A type of ECS with nice coset representatives is given by

$$\{B\mathbb{Z}^n + ie_i\}, i = 0, 1, \cdots, k - 1, \tag{1.2}$$

where $e_j = (0, 0, \dots, 0, 1, 0, 0, \dots, 0)^T$ is the *j*th elementary column vector in \mathbb{Z}^n . We call (1.2) simple ECS. We call the matrix *B* simple covering matrix. In [4], Cao studied some simple ECS and used them to prove some identities for theta functions. Here we give a sufficient and necessary condition for simple ECS.

Theorem 1.2. A nonsingular integer matrix B is a simple covering matrix if and only if there exists $1 \leq j \leq n$, such that the elements of B_j^* are coprime, where B_j^* is the jth column of B^* , the adjugate of B. In this case, $\{B\mathbb{Z}^n + ie_j\}$ is an ECS of \mathbb{Z}^n , where i runs through any complete residue system modulo $|\det B|$.

Proof. Note that $\mathbb{Z}^n/B\mathbb{Z}^n$ is a simple ECS if and only if, for some fixed j, the equation

$$Bx = re_j$$

has no integer solution for all $r = 1, 2, \dots, k - 1$. We prove it by contraposition.

Solving the above equation, we have

$$x = \frac{B^*}{\det B} re_j = \frac{r}{k} B_j^*.$$
(1.3)

Set $gcd(B_{1j}^*, B_{2j}^*, \dots, B_{nj}^*) = d$. Note that d|k. If d > 1, then (1.3) has integer solutions when r = k/d. On the other hand, if (1.3) has integer solutions for some $1 \le r < k$, then k/(r, k) divides all elements of B_j^* . Therefore $d \ge k/(r, k) > 1$.

Therefore we see that (1.3) has no integer solutions if and only if the elements of B_i^* are coprime. \Box

Corollary 1.1. A 2 × 2 integer matrix B is a simple covering matrix if and only if $gcd(b_{11}, b_{12}) = 1$ or $gcd(b_{21}, b_{22}) = 1$.

Proof. This is a special case of Theorem 1.2 when B is a 2×2 matrix. \Box

Next we introduce a more sophisticated structure than integer matrix ECS.

Download English Version:

https://daneshyari.com/en/article/4613818

Download Persian Version:

https://daneshyari.com/article/4613818

Daneshyari.com