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In the present paper we prove lower bounds for L-functions from the Selberg 
class, by this means improving earlier results obtained by the second author 
together with Jörn Steuding. We formulate two theorems which use slightly different 
technical assumptions, and give two totally different proofs. The first proof uses the 
“resonance method”, which was introduced by Soundararajan, while the second 
proof uses methods from Diophantine approximation which resemble those used by 
Montgomery. Interestingly, both methods lead to roughly the same lower bounds, 
which fall short of those known for the Riemann zeta function and seem to be 
difficult to be improved. Additionally to these results, we also prove upper bounds 
for L-functions in the Selberg class and present a further application of a theorem 
of Chen which is used in the Diophantine approximation method mentioned above.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the absolute value of the Riemann zeta function ζ(σ + it) takes arbitrarily large 
and arbitrarily small values when t runs through the real numbers and σ ∈ [1/2, 1) is a fixed real number. 
However, the growth of the Riemann zeta function as a function of t (for fixed σ) cannot be too fast, since 
its absolute value is bounded by a power of t. More precisely, if μζ(σ) denotes the infimum over all c ≥ 0
satisfying ζ(σ + it) � tc for sufficiently large t, then one can show that μζ(σ) ≤ (1 − σ)/2 for 0 ≤ σ ≤ 1. 
Although the upper bound for μζ(σ) has been improved by many mathematicians, especially for σ = 1/2, it 
is yet unproved (but widely believed) that μζ(σ) = 0 for σ ≥ 1/2 (for more details we refer to [10] or [20]). 
As evidence for the truth of this conjecture one can regard the Riemann hypothesis, which implies that

log ζ(σ + it) � (log t)2−2σ

log log t , for 1
2 ≤ σ < 1.
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Therefore, it is natural to ask for omega results on ζ(σ + it). The first answer was given by Titchmarsh 
(see [20, Theorem 8.12]), who proved that for any σ ∈ [1/2, 1) and every ε > 0 the inequality |ζ(σ + it)| >
exp

(
(log t)1−σ−ε

)
holds for arbitrarily large values of t. In 1977, Montgomery [12] improved this result for 

σ ∈ (1/2, 1) by proving that for any fixed σ ∈ (1/2, 1) and every sufficiently large T there exists t such that 
T (σ−1/2)/3 ≤ t ≤ T and

|ζ(σ + it)| ≥ exp
(

1
20

(
σ − 1

2

)1/2 (log T )1−σ

(log log T )σ

)
. (1)

Moreover, he showed that under the Riemann Hypothesis the above inequality can be extended to σ ∈
[1/2, 1) with a slightly better constant and better range of t.

The first unconditional proof of Montgomery’s theorem for σ = 1/2 was given by Balasubramanian and 
Ramachandra [4]. The best result currently known is due to Bondarenko and Seip [5], who very recently 
achieved a breakthrough by proving that

max
T 1/2≤t≤T

∣∣∣∣ζ
(

1
2 + it

)∣∣∣∣ ≥ exp
((

1√
2

+ o(1)
)√

log T log log log T
log log T

)
.

Their proof is based on the so-called resonance method, which was introduced by Soundararajan [17], and 
on a connection between extreme values of the Riemann zeta function and certain sums involving greatest 
common divisors (GCD sums). This connection was discovered by Hilberdink [9]. Recently, the first author [1]
succeeded in applying the resonance method with an extremely long resonator such that he could recapture 
Montgomery’s results by the resonance method, off the critical line, an idea which also plays a crucial role 
in the omega result of Bondarenko and Seip.

Similar problems of finding extreme values were also investigated for other zeta and L-functions, and 
it was shown that Montgomery’s approach can be applied to some generalizations of the Riemann zeta 
function. For example, Balakrishnan [3] showed that Dedekind zeta functions take large values of order 
exp(c(log T )1−σ/(log log T )σ), and Sankaranarayanan and Sengupta [16] generalized Montgomery’s theorem 
to a wide class of L-functions defined by Dirichlet series with real coefficients under some natural analytic 
and arithmetic conditions.

Recently, the second author and Steuding [15] investigated further refinements of Montgomery’s reasoning 
and proved that for every L-function L(s) =

∑
n≥1 aL(n)n−s from the Selberg class which satisfies L(s) �= 0

for σ > 1/2 we have

max
t∈[T,2T ]

|L(σ + it)| ≥ exp
(
c

(log T )1−σ

(log log T )2−σ

)
(2)

for some explicitly given constant c > 0 and sufficiently large T , under the additional assumption that the 
coefficients of L satisfy a prime number theorem with remainder term in the form

∑
p≤x

|aL(p)| = κ
x

log x + O
(

x

log2 x

)
, (κ > 0). (3)

Note that Montgomery’s argument requires a prime number theorem in order to get a lower bound for the 
sum of |aL(p)| over primes in some interval, which might be estimated from below by the sum of |aL(p)|2, 
provided |aL(p)| � 1. Hence, the condition (3) can be replaced by the more natural assumption that L has 
a polynomial Euler product and satisfies the Selberg normality conjecture in the stronger form

∑
p≤x

|aL(p)|2 = κ
x

log x + O
(

x

log2 x

)
, (κ > 0). (4)
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