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1. Introduction

The classical Picone’s identity says that for differentiable functions v > 0 and u > 0,

2 u2 2 u 2 U2
|[Vu|® + = |Vu|* —2—VuVv =|Vu|* =V [ — | Vv > 0. (1.1)
V2 v v

(1.1) has enormous applications to second-order elliptic equations and systems, see for instance [10-12,38]
and the references therein. For a nonlinear version of (1.1), we refer to [45]. In order to apply (1.1) to equa-
tions involving p-Laplace operator, biharmonic operator and other general divergence type operators, (1.1)
has been extended in several directions, see [13,21,27,32,33,35] and the references cited therein. W. Alle-
gretto and Y.X. Huang [13] proved some qualitative results using the Picone’s identity. J. Jaros established
the Picone’s identity for Finsler p-Laplacian [33] and A-harmonic operator [32]. He also proved various qual-
itative results such as Caccioppoli type estimates, nonexistence of positive supersolutions, uniqueness and
simplicity of the first eigenvalue, domain monotonicity property of the first eigenvalue, Barta-type inequality
etc. B. Abdellaoui and I. Peral [1] used classical Picone’s identity for p-Laplace operator to establish the
Picone’s inequality in integral form for W1?(£2) functions. They used Picone’s inequality to prove several
results, see for instance [2,4-7,30,39,40]. Picone’s identity for the operator

—div(a(z, Vu)),
where
a:QxR* = R"?

satisfies certain conditions, is established by Kawohl et al. [35]. They proved that for differentiable functions
v > 0 and u > 0, the following equality holds:

uP

(a(z, V), Vai) — <a(m,V1}),V ( )> = (a(z, V), Vau) —p<a (a: %Vv) ,vu> (1.2)

po
+(p-1) <a (m, %Vv) , %Vv> ,

where (-, -) denotes the usual inner product in R".
In the case when

a:QxRxR" = R" (1.3)

and satisfies hypotheses given in Section 2, (1.2) can be obtained in the following form:

uP
pp—1

(a(z, u, Vu), Vu) — <a(x,v,Vv),V ( >> = (a(z,u, Vu), Vi) (1.4)

—p <a (:L',U, %Vv) ,Vu> +(p-1) <a (ac, v, %Vv) , %V’U> .

The proof of (1.4) is on the similar lines as the proof of (1.2). The aim of this paper is to establish several
applications of (1.4) and for this purpose, let us consider the model problem

{—div(a(x,u, Vu)) = AM(x,u, Vu) + g(x) in Q, (1.5)

u=20 on 0f).
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