Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Weighted Bergman projections on the Hartogs triangle

Liwei Chen

Department of Mathematics, The Ohio State University, Columbus, OH, USA

ARTICLE INFO

Article history: Received 26 October 2015 Available online 7 September 2016 Submitted by M. Peloso

Keywords: Hartogs triangle Bergman projection L^p regularity A_p^+ -condition ABSTRACT

We prove the L^p regularity of the weighted Bergman projections on the Hartogs triangle, where the weights are powers of the distance to the singularity at the boundary. The restricted range of p is proved to be sharp. By using a two-weight inequality on the upper half plane with Muckenhoupt weights, we can consider a slightly wider class of weights.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Setup

Let Ω be a domain in \mathbb{C}^n .

Definition 1.1. A measurable function μ is a *weight* on Ω , if $\mu > 0$ almost everywhere and is locally integrable on Ω .

For $p \geq 1$, we consider the weighted L^p space

 $L^p(\Omega,\mu)=\{f \text{ measurable on } \Omega \, : \, \|f\|_{L^p(\Omega,\mu)}<\infty\},$

where $\|\cdot\|_{L^p(\Omega,\mu)}$ is the weighted L^p norm defined by

$$||f||_{L^{p}(\Omega,\mu)} = \left(\int_{\Omega} |f(z)|^{p} \mu(z) dV(z)\right)^{\frac{1}{p}}.$$

E-mail address: chen.1690@osu.edu.

http://dx.doi.org/10.1016/j.jmaa.2016.08.065 $0022\text{-}247\mathrm{X}/\odot$ 2016 Elsevier Inc. All rights reserved.

CrossMark

Let $\mathcal{O}(\Omega)$ be the set of holomorphic functions on Ω . For p = 2, it is easy to see that, if μ is continuous and non-vanishing on Ω , then the analytic subspace $A^2(\Omega, \mu) = L^2(\Omega, \mu) \cap \mathcal{O}(\Omega)$ is closed in $L^2(\Omega, \mu)$.

Definition 1.2. For a continuous and non-vanishing weight μ on Ω , we define the weighted Bergman projection $\mathcal{B}_{\Omega,\mu}$ on Ω with the weight μ to be the orthogonal projection from $L^2(\Omega,\mu)$ to $A^2(\Omega,\mu)$. The weighted Bergman projection is an integral operator

$$\mathcal{B}_{\Omega,\mu}(f)(z) = \int_{\Omega} B_{\Omega,\mu}(z,\zeta) f(\zeta) \mu(\zeta) \, dV(\zeta),$$

where $B_{\Omega,\mu}(z,\zeta)$ is the weighted Bergman kernel with $(z,\zeta) \in \Omega \times \Omega$.

1.2. Results

In this paper, we study the L^p regularity of the weighted Bergman projection on the Hartogs triangle

$$\mathbb{H} = \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| < |z_2| < 1 \}$$

with the weight

$$\mu(z) = |z_2|^{s'} |g(z_2)|^2, \qquad (1.1)$$

where $z \in \mathbb{H}$, $s' \in \mathbb{R}$ and g is a non-vanishing holomorphic function on the unit disk \mathbb{D} . Note that on \mathbb{H} , $|z_2|$ is comparable to |z|.

We first consider the weight μ with $g \equiv 1$ in (1.1).

Theorem 1. For $s' \in \mathbb{R}$ with the unique expression s' = s + 2k, where $k \in \mathbb{Z}$ and $s \in (0, 2]$, let $\mathcal{B}_{\mathbb{H},s'}$ be the weighted Bergman projection on \mathbb{H} with the weight $\mu(z) = |z_2|^{s'}$, where $z \in \mathbb{H}$.

- (1) For $s' \in (-2, \infty)$, $\mathcal{B}_{\mathbb{H},s'}$ is L^p bounded if and only if $p \in \left(\frac{s+2k+4}{s+k+2}, \frac{s+2k+4}{k+2}\right)$.
- (2) For $s' \in [-5, -2]$, $\mathcal{B}_{\mathbb{H},s'}$ is L^p bounded for $p \in (1, \infty)$.
- (3) For $s' \in (-6, -5)$, then k = -3 and $s \in (0, 1)$, $\mathcal{B}_{\mathbb{H}, s'}$ is L^p bounded if and only if $p \in \left(2 s, \frac{2-s}{1-s}\right)$.
- (4) When s' = -6, $\mathcal{B}_{\mathbb{H},s'}$ is L^p bounded for $p \in (1,\infty)$.
- (5) For $s' \in (-\infty, -6)$, $\mathcal{B}_{\mathbb{H},s'}$ is L^p bounded if and only if $p \in \left(\frac{s+2k+4}{k+2}, \frac{s+2k+4}{s+k+2}\right)$.

Remark 1.3. A similar result holds for the *n*-dimensional generalization of the Hartogs triangle. See section 3 for details.

Remark 1.4. We point out that in Theorem 1 the range of p does not change continuously as s' varies. It is rather surprising that when s' is slightly larger than -2, the range of p is just a small neighborhood of 2. Whereas at s' = -2, we have the full range $p \in (1, \infty)$. In fact, similar jumps happen at the right hand sides of all the even integers, except at s' = -4. The reason is that the analytic subspace $A^2(\mathbb{H}, |z_2|^{s'})$ remains fixed as long as s' does not go past the even integers.

To consider a wider class of weights of the form in (1.1), inspired by the ideas in [11,18], we use a different method and prove the following result.

Download English Version:

https://daneshyari.com/en/article/4613831

Download Persian Version:

https://daneshyari.com/article/4613831

Daneshyari.com