Weighted Bergman projections on the Hartogs triangle

Liwei Chen

Department of Mathematics, The Ohio State University, Columbus, OH, USA

A R T I C L E I N F O

Article history:

Received 26 October 2015
Available online 7 September 2016
Submitted by M. Peloso

Keywords:

Hartogs triangle
Bergman projection
L^{p} regularity
A_{p}^{+}-condition

Abstract

We prove the L^{p} regularity of the weighted Bergman projections on the Hartogs triangle, where the weights are powers of the distance to the singularity at the boundary. The restricted range of p is proved to be sharp. By using a two-weight inequality on the upper half plane with Muckenhoupt weights, we can consider a slightly wider class of weights.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Setup

Let Ω be a domain in \mathbb{C}^{n}.

Definition 1.1. A measurable function μ is a weight on Ω, if $\mu>0$ almost everywhere and is locally integrable on Ω.

For $p \geq 1$, we consider the weighted L^{p} space

$$
L^{p}(\Omega, \mu)=\left\{f \text { measurable on } \Omega:\|f\|_{L^{p}(\Omega, \mu)}<\infty\right\}
$$

where $\|\cdot\|_{L^{p}(\Omega, \mu)}$ is the weighted L^{p} norm defined by

$$
\|f\|_{L^{p}(\Omega, \mu)}=\left(\int_{\Omega}|f(z)|^{p} \mu(z) d V(z)\right)^{\frac{1}{p}}
$$

[^0]Let $\mathcal{O}(\Omega)$ be the set of holomorphic functions on Ω. For $p=2$, it is easy to see that, if μ is continuous and non-vanishing on Ω, then the analytic subspace $A^{2}(\Omega, \mu)=L^{2}(\Omega, \mu) \cap \mathcal{O}(\Omega)$ is closed in $L^{2}(\Omega, \mu)$.

Definition 1.2. For a continuous and non-vanishing weight μ on Ω, we define the weighted Bergman projection $\mathcal{B}_{\Omega, \mu}$ on Ω with the weight μ to be the orthogonal projection from $L^{2}(\Omega, \mu)$ to $A^{2}(\Omega, \mu)$. The weighted Bergman projection is an integral operator

$$
\mathcal{B}_{\Omega, \mu}(f)(z)=\int_{\Omega} B_{\Omega, \mu}(z, \zeta) f(\zeta) \mu(\zeta) d V(\zeta)
$$

where $B_{\Omega, \mu}(z, \zeta)$ is the weighted Bergman kernel with $(z, \zeta) \in \Omega \times \Omega$.

1.2. Results

In this paper, we study the L^{p} regularity of the weighted Bergman projection on the Hartogs triangle

$$
\mathbb{H}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|<\left|z_{2}\right|<1\right\}
$$

with the weight

$$
\begin{equation*}
\mu(z)=\left|z_{2}\right|^{s^{\prime}}\left|g\left(z_{2}\right)\right|^{2} \tag{1.1}
\end{equation*}
$$

where $z \in \mathbb{H}, s^{\prime} \in \mathbb{R}$ and g is a non-vanishing holomorphic function on the unit disk \mathbb{D}. Note that on $\mathbb{H},\left|z_{2}\right|$ is comparable to $|z|$.

We first consider the weight μ with $g \equiv 1$ in (1.1).

Theorem 1. For $s^{\prime} \in \mathbb{R}$ with the unique expression $s^{\prime}=s+2 k$, where $k \in \mathbb{Z}$ and $s \in(0,2]$, let $\mathcal{B}_{\mathbb{H}, s^{\prime}}$ be the weighted Bergman projection on \mathbb{H} with the weight $\mu(z)=\left|z_{2}\right|^{s^{\prime}}$, where $z \in \mathbb{H}$.
(1) For $s^{\prime} \in(-2, \infty), \mathcal{B}_{\mathbb{H}, s^{\prime}}$ is L^{p} bounded if and only if $p \in\left(\frac{s+2 k+4}{s+k+2}, \frac{s+2 k+4}{k+2}\right)$.
(2) For $s^{\prime} \in[-5,-2], \mathcal{B}_{H, s^{\prime}}$ is L^{p} bounded for $p \in(1, \infty)$.
(3) For $s^{\prime} \in(-6,-5)$, then $k=-3$ and $s \in(0,1), \mathcal{B}_{\mathbb{H}, s^{\prime}}$ is L^{p} bounded if and only if $p \in\left(2-s, \frac{2-s}{1-s}\right)$.
(4) When $s^{\prime}=-6, \mathcal{B}_{\mathbb{H}, s^{\prime}}$ is L^{p} bounded for $p \in(1, \infty)$.
(5) For $s^{\prime} \in(-\infty,-6), \mathcal{B}_{H 1, s^{\prime}}$ is L^{p} bounded if and only if $p \in\left(\frac{s+2 k+4}{k+2}, \frac{s+2 k+4}{s+k+2}\right)$.

Remark 1.3. A similar result holds for the n-dimensional generalization of the Hartogs triangle. See section 3 for details.

Remark 1.4. We point out that in Theorem 1 the range of p does not change continuously as s^{\prime} varies. It is rather surprising that when s^{\prime} is slightly larger than -2 , the range of p is just a small neighborhood of 2 . Whereas at $s^{\prime}=-2$, we have the full range $p \in(1, \infty)$. In fact, similar jumps happen at the right hand sides of all the even integers, except at $s^{\prime}=-4$. The reason is that the analytic subspace $A^{2}\left(\mathbb{H},\left|z_{2}\right|^{s^{\prime}}\right)$ remains fixed as long as s^{\prime} does not go past the even integers.

To consider a wider class of weights of the form in (1.1), inspired by the ideas in [11,18], we use a different method and prove the following result.

https://daneshyari.com/en/article/4613831

Download Persian Version:

https://daneshyari.com/article/4613831

Daneshyari.com

[^0]: E-mail address: chen.1690@osu.edu.
 http://dx.doi.org/10.1016/j.jmaa.2016.08.065
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

