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In this paper, we study the asymptotic behavior of solutions of a class of non-
autonomous delay differential equations. These equations have important practical 
applications and generalize those on which Bernfeld and Haddock conjectured that 
each solution of the equations tends to a constant. It is shown that every solution 
of the equations is bounded and tends to a constant as t → +∞, which improves 
and extends some existing ones.
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1. Introduction

Recently, the scalar delay differential equation,

x′(t) = −F (x(t)) + F (x(t− r)), (1.1)

has been extensively studied (see, for example, [1,5–8,10–12,16–19] and the references cited therein) because 
of their applications in modeling population growth, the spread of epidemics, the dynamics of capital stocks 
and so on. When F (x) = x

1
3 , Bernfeld and Haddock [4] conjectured that each solution of (1.1) tends to a 

constant. Furthermore, it was shown in the above mentioned references that each solution of equation (1.1)
tends to a constant as t → +∞ under the assumption that F is either strictly increasing or locally Lipschitz 
and nondecreasing. Though the uniqueness of the left-hand solution of the following differential equation,

{
x′(t) = −F (x(t)) + F (c),
x(t0) = x0 for all t0, x0 ∈ R,

(1.2)
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played a crucial role in the discussion of [5,6,10–12], this is not true as demonstrated by a counterexample 
in [20]. Consequently, in order to correct the proofs in [5,6,10–12], Ding adopted the following additional 
assumption.

(H) If c �= 0, then the left-hand solution of the equation (1.2) is unique.

See the Appendix of [20].
It should be mentioned that it is difficult to provide some sufficient conditions guaranteeing the uniqueness 

of the left-hand solution of the initial value problem (1.2). So far it has not been proved whether F (x) =
x

1
3 satisfies (H) or not. Therefore, the proof in the appendix of [20] needs further improvement. This 

is also true for the paper [21] as it extended the results in [5,6,10–12]. On the other hand, delays in 
population and ecology models are usually time-varying and hence these models are generalized to be 
described by non-autonomous functional differential equations. As a result, we can generalize the equations 
in the Bernfeld–Haddock conjecture to the following non-autonomous delay differential equations,

x′(t) = γ(t)[−x
1
n (t) + x

1
n (t− τ(t))], (1.3)

where τ(t) and γ(t) are all continuous functions and are bounded above and below by positive constants, 
and n is a positive odd number. Obviously, the non-autonomous pantograph equation in [2,3,9,13,14] is only 
a special case of (1.3) with n = 1.

Motivated by the above discussion, we aim to employ a novel argument to provide some sufficient con-
ditions which guarantee the uniqueness of the left-hand solution of the initial value problem (1.2), which 
can be used to show that every solution of (1.3) tends to a constant as t → +∞. Throughout this paper, 
we let r = sup

t∈R
τ(t) ≥ inf

t∈R
τ(t) > 0 and C = C([−r, 0], R). If σ ≥ 0, t0 ∈ R, and x ∈ C([t0 − r, t0 + σ], R), 

then, for any t ∈ [t0, t0 + σ], xt ∈ C is defined by xt(t0, θ) = x(t0, t + θ), −r ≤ θ ≤ 0. Moreover, for 
ϕ ∈ C, we use xt(t0, ϕ) (x(t; t0, ϕ)) to denote the solution of (1.3) with the initial data xt0(t0, ϕ) = ϕ. For 
V (t) ∈ C([a, ∞), R), let

D+V (t) = lim sup
h→0+

V (t + h) − V (t)
h

and D−V (t) = lim inf
h→0+

V (t + h) − V (t)
h

.

The remaining part of this paper is organized as follows. In Section 2, we recall some relevant results, 
and give a detailed proof on the uniqueness of the left-hand solution of the initial value problem (1.2) with 
F (x) = qx

1
n . Meanwhile, we show the boundedness and global existence of every solution for (1.3) with 

the initial data xt0 = ϕ ∈ C. Based on the preparation in Section 2, we state and prove our main result 
in Section 3. In Section 4, we give some examples to illustrate the effectiveness of the obtained results by 
numerical simulation. We also formulate some relevant open problems.

2. Preliminary results

Assume that F : R → R is continuous and strictly increasing. Then, from Proposition 4∗ and Proposi-
tion 5∗ in [20], we have

Proposition 2.1. Let (H) hold. Consider the differential equation,

u′ = −F (u) + F (c + ε), (2.1)

where c �= 0 is a given constant, ε is a parameter satisfying 0 ≤ ε ≤ |c|
2 . Moreover, assume the initial 

condition
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