# A solution to the problem of Raşa connected with Bernstein polynomials 

Jacek Mrowiec, Teresa Rajba, Szymon Wąsowicz*<br>Department of Mathematics, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland

## A R T I C L E I N F O

## Article history:

Received 25 April 2016
Available online 8 September 2016
Submitted by M.J. Schlosser

## Keywords:

Bernstein polynomials
Stochastic ordering
Ohlin's Lemma
Concentration inequality
Convex functions
Bernoulli and binomial distributions


#### Abstract

During the Conference on Ulam's Type Stability (Rytro, Poland, 2014), Ioan Raşa recalled his 25 -years-old problem concerning some inequality involving the Bernstein polynomials. We offer the complete solution (in positive). As a tool we use stochastic orderings (which we prove for binomial distributions) as well as so-called concentration inequality. Our methods allow us to pose (and solve) the extended version of the problem in question.


© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

The Bernstein fundamental polynomials of degree $n \in \mathbb{N}$ are given by the formula

$$
b_{n, i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, \quad i=0,1, \ldots, n
$$

In 2014, during the Conference on Ulam's Type Stability held in Rytro (Poland), Ioan Raşa recalled his 25-years-old problem [1, Problem 2, p. 164] related to the preservation of convexity by the Bernstein-Schnabl operators.

Problem. Prove or disprove that

$$
\begin{equation*}
\sum_{i, j=0}^{n}\left(b_{n, i}(x) b_{n, j}(x)+b_{n, i}(y) b_{n, j}(y)-2 b_{n, i}(x) b_{n, j}(y)\right) f\left(\frac{i+j}{2 n}\right) \geqslant 0 \tag{1.1}
\end{equation*}
$$

for each convex function $f \in \mathcal{C}([0,1])$ and for all $x, y \in[0,1]$.

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.09.009
0022-247X/© 2016 Elsevier Inc. All rights reserved.

The aim of this paper is to answer the above-stated problem affirmatively (i.e., to prove (1.1)).
Let us invoke some basic notations and results (see e.g. [3]). Let $(\Omega, \mathcal{F}, P)$ be a probability space. As usual, $F_{X}(x)=P(X<x)(x \in \mathbb{R})$ stands for the probability distribution function of a random variable $X$ : $\Omega \rightarrow \mathbb{R}$, while $\mu_{X}$ is the distribution corresponding to $X$. For real-valued random variables $X, Y$ with finite expectations we say that $X$ is dominated by $Y$ in the stochastic convex ordering sense, if

$$
\begin{equation*}
\mathbb{E} f(X) \leqslant \mathbb{E} f(Y) \tag{1.2}
\end{equation*}
$$

for all convex functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (for which the expectations above exist). In that case we write $X \leqslant \mathrm{cx} Y$ or $F_{X} \leqslant{ }_{c x} F_{Y}$.

The main idea of our solution is to study the convex stochastic ordering within the class of binomial distributions. To this end we make use of Ohlin's Lemma [8, Lemma 2, p. 256], which gives a sufficient condition for two random variables to be in the stochastic convex ordering relation.

Ohlin's Lemma. Let $X, Y$ be two random variables and suppose that $\mathbb{E} X=\mathbb{E} Y$. If the probability distribution functions $F_{X}, F_{Y}$ cross exactly once, i.e.,

$$
F_{X}(x) \leqslant F_{Y}(x) \text { if } x<x_{0} \quad \text { and } \quad F_{X}(x) \geqslant F_{Y}(x) \text { if } x>x_{0}
$$

for some $x_{0} \in \mathbb{R}$, then $X \leqslant_{c x} Y$.
Originally this lemma was applied to certain insurance problems and it was lesser-known to mathematicians for a long time. It was re-discovered by the second-named author, who found a number of applications in the theory of convex functions (cf. [10,11]).

Remark 1. Szostok noticed in [12] that if the measures $\mu_{X}, \mu_{Y}$ corresponding to $X, Y$, respectively, are concentrated on the interval $[a, b]$, then, in fact, the relation $X \leqslant_{c x} Y$ holds if and only if the inequality (1.2) is satisfied for all continuous convex functions $f:[a, b] \rightarrow \mathbb{R}$.

Recall that $X \sim B(p)$ means that the random variable $X$ has the Bernoulli distribution with the parameter $p \in(0,1)$. If $X$ has the binomial distribution with the parameters $n \in \mathbb{N}$ and $p \in(0,1)$ (which we denote by $X \sim B(n, p)$ for short $)$, then, of course,

$$
\begin{equation*}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n \quad \text { and } \quad \mathbb{E} X=n p \tag{1.3}
\end{equation*}
$$

Below we recall the binomial convex concentration inequality, which plays an important rôle in our considerations. It is, in fact, due to Hoeffding [4]. Nevertheless, Hoeffding did not state it in the form required for our purposes. The desired form can be found, e.g., in [5, Proposition 1, p. 67].

Theorem 2. Let $b_{i} \sim B\left(p_{i}\right)(i=1, \ldots, n)$ be independent random variables. Set $S_{n}=b_{1}+\cdots+b_{n}$. Let $\bar{p}=\frac{p_{1}+\cdots+p_{n}}{n}$ and suppose that $S_{n}^{*} \sim B(n, \bar{p})$. Then

$$
\mathbb{E} \Phi\left(S_{n}\right) \leqslant \mathbb{E} \Phi\left(S_{n}^{*}\right)
$$

for any convex function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ (which means that $S_{n} \leqslant \mathrm{cx} S_{n}^{*}$ ).
A crucial result required to solve Raşa's problem reads as follows.

# https://daneshyari.com/en/article/4613849 

Download Persian Version:
https://daneshyari.com/article/4613849

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: jmrowiec@ath.bielsko.pl (J. Mrowiec), trajba@ath.bielsko.pl (T. Rajba), swasowicz@ath.bielsko.pl (S. Wąsowicz).

