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We study the Dirac–Maxwell model quantized in the Lorenz gauge. In this gauge, 
the space of quantum mechanical state vectors inevitably adopt an indefinite metric 
so that the canonical commutation relation (CCR) is realized in a Lorentz covariant 
manner. In order to obtain a physical subspace, in which no negative norm state 
exists, the method first proposed by Gupta and Bleuler is applied with mathematical 
rigor. It is proved that a suitably defined physical subspace has a positive semi-
definite metric, and naturally induces a physical Hilbert space with a positive 
definite metric. Then, the original Dirac–Maxwell Hamiltonian defines an induced 
Hamiltonian on the physical Hilbert space which is essentially self-adjoint.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider a quantum system of N Dirac particles under an external potential V interacting with a 
quantized gauge field (so called Dirac–Maxwell model). If we apply the informal perturbation theory to this 
model, quantitative predictions are obtained such as the Klein–Nishina formula for the cross section of the 
Compton scattering of an electron and a photon [19], which agrees with the experimental results very well. 
Hence, the Dirac–Maxwell model is expected to describe a certain class of realistic quantum phenomena 
and thus is worth the analysis with mathematical rigor, even though it may suffer from so called “negative 
energy problem”. The mathematically rigorous study of this model was initiated by Arai in Ref. [1], and 
several mathematical aspects of the model was analyzed so far (see, e.g., Refs. [3–5,22], and [23]).

The motivation of the present study is to treat this model in the Lorentz gauge in which the Lorenz 
covariance is manifest. In analyzing gauge theories such as quantum electrodynamics (QED) in a Lorentz 
covariant gauge, a difficulty always arises, since one must adopt “an indefinite metric Hilbert space” as 
a space of all the state vectors (for instance, see Ref. [11]). In such cases, we have to pick up a positive 
definite subspace from the total space and regard it as the subspace consisting of the physical state vectors. 
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This is done by eliminating unphysical photon modes with negative norms. The most general and elegant 
method to identify the physical subspace for (possibly non-abelian) gauge theories quantized in a covariant 
gauge was given by the celebrated work by Kugo and Ojima [13,14], which is based on the BRST symmetry, 
the remnant gauge symmetry of the Lagrangian density after imposing some gauge fixing condition. The 
Kugo–Ojima formulation reduces to Nakanishi and Lautrup’s B-field theory [15–18] in the case where the 
gauge field is abelian and after integrating out the auxiliary Nakanishi–Lautrup’s B-field, it is reduced to 
the condition first proposed by Gupta and Bleuler [6,9].

The Gupta and Bleuler condition says that a state vector belongs to the physical subspace if and only 
if it has the vanishing expectation value of the operator ∂μAμ, the four component divergence of the gauge 
field:

〈Ψ|∂μAμ(t,x)Ψ〉 = 0, (1.1)

at every spacetime point (t, x) ∈ R
4. From the equations of motion �Aμ = −jμ (with “mostly plus met-

ric”) and the current conservation equation ∂μjμ = 0, we heuristically find that ∂μAμ(t, x) satisfies the 
Klein–Gordon equation so that (1.1) is written as

[∂μAμ]+(t,x)Ψ = 0, (1.2)

where [∂μAμ]+(t, x) denotes the positive frequency part of the free field ∂μAμ. However, in order to rigorously 
follow this procedure, one has to answer the following two questions. Firstly, how to identify A(t, x) at a time 
t ∈ R? Since the present state vector space is not an ordinary Hilbert space with a positive definite metric, 
the Hamiltonian can not be defined as a self-adjoint operator in the ordinary sense. Thus, it is far from 
trivial if there is a solution of quantum Heisenberg equations of motion. Secondly, is it possible to identify 
the positive frequency part of the operator satisfying Klein–Gordon equation even in an indefinite metric 
space? The first problem is solved by the general construction method of time evolution operator generated 
by a non-self-adjoint operator given by the authors [7], and as to the second one, the general definition of 
“positive frequency part” of a quantum field satisfying Klein–Gordon equation is given in Ref. [10].

Mathematically rigorous study of concrete models of QED in the Lorentz covariant gauge (see, for in-
stance, Refs. [10,12,24,26]) was only given for a solvable models as far as we know. However, the model 
treated here, the Dirac–Maxwell model, is not solvable in the sense that an explicit expression of the time-
dependent gauge field is not easily found. Thus, the problem has to be abstractly considered without relying 
on the explicit expression of the time dependent gauge field but only on the abstract existence theorem. 
In this paper, we establish the existence of a time evolution operator and give a definition of the “positive 
frequency part” of a free field satisfying Klein–Gordon equation in an abstract setup. Our definition of “pos-
itive frequency part” given here is different from that given in Ref. [10], but results in the same consequence 
when applied to the concrete models. We then apply to the abstract theory to the concrete Dirac–Maxwell 
model and identify the physical Hilbert space. We also prove that the original Dirac–Maxwell Hamiltonian 
naturally defines a self-adjoint “physical Hamiltoninan” on the Hilbert space, which is essentially equivalent 
to the Dirac–Maxwell Hamiltonian in the Coulomb gauge discussed in Ref. [1].

The mathematical tools developed here would have some interests in its own right. The time evolution 
operator generated by unbounded, non-self-adjoint Hamiltonians has been constructed in Ref. [7]. In this 
paper, we further develop the theory in several aspects. Firstly, we define a general class of operators, which 
we will call Cn-class operators, and prove that a Cn-class operator B has a time evolution B(t) for t ∈ R

which solves the Heisenberg equation, and B(t)ξ is n-times strongly differentiable in t for ξ belonging to 
a dense subset D′. Moreover, the n-th derivative of B(t) enjoys the natural expression in terms of a weak 
commutator defined in a suitable sense. Secondly, we define a more restricted class of operators, which will be 
called Cω-class operators, and prove that Cω-class operators have a time evolution which is analytic in t ∈ R. 
Furthermore, it would be interesting to see that the following Taylor expansion formula (2.40) remains valid 
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