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A number of techniques, some of which are novel, are introduced to develop a 
systematic method to study a set of eigenvalue problems arising from the stability 
analysis of bubble steady states of a Keller–Segel’s minimal chemotaxis model. 
Estimates of the eigenvalue with largest real part of an elliptic system without 
variational structure and the second eigenvalue of a corresponding subproblem 
possessing variational structure are obtained. These estimates provide critical 
information about the stability of the bubble steady state with respect to the time 
relaxation parameter; in particular, it is shown that the stability decreases to zero 
as the relaxation parameter goes to infinity.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Spectral analysis is extremely important in physics and engineering. Estimation of size of eigenvalues 
provides valuable information about the observability and duration of observation of special phenomena 
and about the effects of small perturbation from equilibria. In this paper we consider eigenvalue problems 
arising from a Keller and Segel’s [10] minimal chemotaxis model, which in its dimensionless form, can be 
written as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

τut = (ux − kf(u)vx)x in Ω × (0,∞),
vt = vxx − v + g(u) in Ω × (0,∞),
ux = vx = 0 on ∂Ω × (0,∞),∫
Ω u(x, t)dx = m for all t ≥ 0;

(1.1)
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here Ω = (0, �), t relates the time, x the space, u the cell density, v the chemo-attractant density, m the 
total mass of the cell, f and g are given functions to be specified later, and τ � 0 and k � 1 are constants. 
We call τ the time relaxation parameter and k the chemotaxis’ strength parameter.

Any steady state of (1.1) can be extended evenly and periodically. We assume that � is the half-period. 
Then steady states are solutions of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ux = kf(u)vx > 0 in Ω,

vxx − v + g(u) = 0 in Ω,

ux = vx = 0 on ∂Ω,∫
Ω u(x) = m.

(1.2)

A huge volume of work has been devoted to various PDE models for chemotaxis; see the survey papers 
[5–7]. The most important phenomenon about chemotaxis is cell aggregation, which typically is modeled by 
spiky steady states. The pioneering papers that prove the existence of such steady states are Lin, Ni and 
Takagi [12,13], Kabeya and Ni [8]; see also Wang and Xu [15] for a brief survey.

In [15], Wang and Xu proved the following: (i) Suppose f(u) = u and g(u) = u. Then (1.1) admits a 
steady state solution of which u approaches, as k → ∞, a Dirac measure of mass m, for which we call a 
spike; (ii) Suppose f(u) = u − u2, g(u) = u and m ∈ (0, �). Then (1.1) admits a steady state solution of 
which u approaches, as k → ∞, a translated Heaviside function, for which we call a bubble.

For spike solutions, Kang, Kolokolnikov, and Ward [9] derived formally the first term of the expansion 
(as k → ∞). In [2], we established the uniqueness of the spike solution, provided its rigorous asymptotic 
expansion, and proved that the solution is locally exponentially stable. The associated eigenvalue problem 
is reinvestigated in [16] in a general setting with a systematic method.

Very recently, in [11] we extended the analysis of [2] to the bubble solution, establishing the existence, 
uniqueness, asymptotic expansion, and local exponentially stability of the bubble solution discovered by 
Wang and Xu [15], under the following structural conditions:

(f) f ∈ C3([0, 1]), f(0) = f(1) = 0, f > 0 in (0, 1), f ′(0) > 0 > f ′(1);
(g) g ∈ C2([0, 1]), g(0) = 0, g(1) = 1, g′ > 0 in (0, 1).

The stability of a steady state (u, v) of (1.1) is determined by the principal eigenvalue (that with largest 
real part) of the corresponding eigenvalue problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τλφ = (φx − kf(u)ψx − kf ′(u)vxφ)x in Ω,

λψ = ψxx − ψ + g′(u)φ in Ω,

φx = ψx = 0 on ∂Ω,∫
Ω φdx = 0.

(1.3)

Set p = kf(u) and w = φ/p − ψ, so φ = p[w + ψ]. Using ux = pvx, one can show that (1.3) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pwx)x = τλp[w + ψ] in Ω,

ψxx − ψ + g′p[w + ψ] = λψ in Ω,

wx = ψx = 0 on ∂Ω,∫
Ω p[w + ψ]dx = 0.

(1.4)

For bubble solutions, in [11] we proved that when k � 1,
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