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In this paper, we consider a thin-film equation with nonlocal source, which was 
studied by Qu and Zhou (2016) [11], where the authors derived the conditions for 
global existence, blow-up and extinction. We consider the case that the initial energy 
is positive and establish a blow-up result for this case. Furthermore, the upper bound 
of the blow-up time is derived.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the evolution equations with nonlocal source like |u|p−1u − |Ω|−1 ´
Ω |u|p−1udx were studied 

extensively (see [1,2,4–12] and references therein). Particularly, in [11], Qu and Zhou considered the following 
thin-film equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxx = |u|p−1u−
a 

0

|u|p−1udx, x ∈ (0, a), t > 0,

ux(0) = ux(a) = uxxx(0) = uxxx(a) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, a),

(1.1)

where a is a positive constant, p > 1 and u0 ∈ H2(0, a), 
ffl a

0 u0dx = a−1 ´ a

0 u0dx with u0 �≡ 0.
In [11], the authors considered the global existence, blow-up and extinction of the solutions to (1.1). Now, 

we recall some notations and functionals in that paper. Denote by ‖ · ‖q the Lq(0, a) norm for 1 ≤ q ≤ ∞
and define
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J(u) = 1
2‖uxx‖2

2 −
1

p + 1‖u‖
p+1
p+1. (1.2)

A natural question is what is the lifenspan (upper bound of the blow-up time) to the blow-up solutions. 
In this paper, under the condition J(u0) > 0, we will establish a new blow-up condition and estimate the 
upper bound of the blow-up time.

Let u(x, t) be the solution of problem (1.1), we can easily find that u(x, t) satisfies 
´ a

0 utdx = 0, which 
further implies that 

´ a

0 udx =
´ a

0 u0dx = 0.
Let W �

{
u ∈ H2(0, a) :

´ a

0 udx = 0
}
, then (W, ‖ · ‖) with ‖u‖ � ‖uxx‖2 is a Banach space. By using 

the Sobolev Embedding Theorem [3], we know that W ↪→ Lp+1(0, a) continuously. Let B be the optimal 
constant of the embedding, i.e.,

‖u‖p+1 ≤ B‖uxx‖2. (1.3)

Let α1 and E1 be two positive constants defined as follows:

α1 � B− p+1
p−1 ,

E1 � p− 1
2(p + 1)B

− 2(p+1)
p−1 = p− 1

2(p + 1)α
2
1.

(1.4)

With the notations given above, the main results of this paper can be stated as follows:

Theorem 1.1. Assume 0 < J(u0) < E1 and ‖u0xx‖2 > α1, then the solution u(x, t) to problem (1.1) blows 
up at a finite time T∗. Moreover, T∗ can be estimate by

T∗ ≤ (p + 1)a p−1
2 ‖u0‖−(p−1)

2

(p− 1)2
{

1 −
[
(p + 1)

(
1
2 − J(u0)

α2
1

)]− p+1
p−1

} . (1.5)

Remark 1.2. By (1.4) and the fact that J(u0) < E1, we know that

(p + 1)
(

1
2 − J(u0)

α2
1

)
> (p + 1)

(
1
2 − E1

α2
1

)

= (p + 1)
(

1
2 − p− 1

2(p + 1)

)
= 1,

then it is easy to see the denominator of the right-hand side of (1.5) is positive, which means (1.5) makes 
sense.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need to introduce several lemmas. The first Lemma can be got by [11, (1.6)].

Lemma 2.1. The J(u)(t) defined in (1.2) is nonincreasing in t and

J(u) = J(u0) −
tˆ

0

‖uτ‖2
2dτ.
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