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As an application of a general left-definite spectral theory, Everitt, Littlejohn and 
Wellman, in 2002, developed the left-definite theory associated with the classical 
Legendre self-adjoint second-order differential operator A in L2(−1, 1) which has the 
Legendre polynomials {Pn}∞n=0 as eigenfunctions. As a consequence, they explicitly 
determined the domain D(A2) of the self-adjoint operator A2. However, this domain, 
in their characterization, does not contain boundary conditions. In fact, this is a 
general feature of the left-definite approach developed by Littlejohn and Wellman. 
Yet, the square of the second-order Legendre expression is in the limit-4 case at each 
end point x = ±1 in L2(−1, 1) so D(A2) should exhibit four boundary conditions. In 
this paper, we show that this domain can, in fact, be expressed using four separated 
boundary conditions using the classical GKN (Glazman–Krein–Naimark) theory. In 
addition, we determine a new characterization of D(A2) that involves four non-GKN
boundary conditions. These new boundary conditions are surprisingly simple – and 
natural – and are equivalent to the boundary conditions obtained from the GKN 
theory.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The analytical study of the classical second-order Legendre differential expression

�[y](x) = −
(
(1 − x2)y′(x)

)′
has a long and rich history stretching back to the seminal work of H. Weyl in 1910 [23] and E.C. Titchmarsh 
in 1940 [21]. Part, if not most, of the reason for the importance of this second-order expression lies in the fact 
that the Legendre polynomials {Pn}∞n=0 are solutions. More specifically, the Legendre polynomial y = Pn(x), 
for n ∈ N0, is a solution of the eigenvalue equation
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�[y](x) = n(n + 1)y(x).

In the Hilbert space L2(−1, 1), there is a continuum of self-adjoint operators generated by �[·]. One such 
operator A stands out from the rest: this is the Legendre polynomials operator, so named because the 
Legendre polynomials {Pn}∞n=0 are eigenfunctions of A. We review properties of this operator in Section 2.

In the mid 1970s, Å. Pleijel wrote two papers (see [18] and [19]) on the Legendre expression from a 
left-definite spectral point of view. W.N. Everitt’s contribution [8] continued this left-definite study in 
addition to detailing an in-depth analysis of the Legendre expression in the right-definite setting L2(−1, 1)
where he discovered new properties of functions in the domain D(A) of A. In [14], A.M. Krall and Littlejohn 
considered properties of the Legendre expression under the left-definite energy norm. In 2000, R. Vonhoff 
extended Everitt’s results in [22] with an extensive study of �[·] in its (first) left-definite setting. In 2002, 
Everitt, Littlejohn and Marić [10] published further results in which they gave several equivalent conditions 
for functions to belong to D(A); this result is given below in Theorem 1. We also refer the reader to the 
paper [16] by Littlejohn and Zettl where the authors determine all self-adjoint operators, generated by the 
Legendre expression �[·], in the Hilbert spaces L2(−1, 1), L2(−∞, −1), L2(1, ∞) and L2(R). At this point, 
we also reference the excellent text [25] by Zettl on Sturm–Liouville theory.

Littlejohn and Wellman [15], in 2002, developed a general left-definite theory for an unbounded self-adjoint 
operator T bounded below by a positive constant in a Hilbert space H = (V, (·, ·)), where V denotes 
the underlying (algebraic) vector space and H is the resulting topological space induced by the norm 
‖·‖ and inner product (·, ·). In a nutshell, the authors construct a continuum of Hilbert spaces {Hr =
(Vr, (·, ·)r)}r>0, forming a Hilbert scale, generated by positive powers of T . The authors called these Hilbert 
spaces left-definite spaces; they are constructed using the Hilbert space spectral theorem (see [20]) for 
self-adjoint operators.

It is a difficult problem, in general, to explicitly determine the domain of a power of an unbounded 
operator. However, the authors in [15] prove that, for r > 0, Vr = D(T r/2) and (f, g)r = (T r/2f, T r/2g). 
Furthermore, in many practical applications, as the authors demonstrate in [15], the computation of the 
vector spaces Vr and inner products (·, ·)r is surprisingly not difficult when r ∈ N. In a subsequent paper, 
Everitt, Littlejohn and Wellman [11] applied this theory to the Legendre polynomials operator A. Among 
other results, the authors explicitly compute the domains of D(An/2) for each n ∈ N. Specifically, they 
proved

D(An/2) = {f : (−1, 1) → C |f, f ′, . . . , f (n−1) ∈ ACloc(−1, 1); (1−x2)n/2f (n) ∈ L2(−1, 1)} (n ∈ N). (1.1)

In particular, we see that D(A2) is explicitly given by

B = {f : (−1, 1) → C | f, f ′, f ′′, f ′′′ ∈ ACloc(−1, 1); (1 − x2)2f (4) ∈ L2(−1, 1)}; (1.2)

the reason for using the notation B, instead of D(A2), will be made clear shortly. Of course, for f ∈ B, we 
have A2f = �2[f ], where �2[·] is the square of the Legendre differential expression given by

�2[y](x) =
(
(1 − x2)2y′′(x)

)′′ − 2
(
(1 − x2)y′(x)

)′
. (1.3)

Notice that, curiously, there are no ‘boundary conditions’ given in (1.2). From the Glazman–Krein–Naimark 
(GKN) theory [17, Theorem 4, Section 18.1], there should be four such boundary conditions. This begs an 
obvious question: how can we ‘extract’ boundary conditions from the representation of D(A2) in (1.2)? In 
this paper, we will answer this question. It is interesting that the condition (1 − x2)2f (4) ∈ L2(−1, 1) seems 
to ‘encode’ these boundary conditions. In fact, along the way, we will characterize D(A2) in four different 
ways. Of course, we have the algebraic definition
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