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We consider a system of nonlinear partial differential equations corresponding to a 
generalization of a mathematical model for geographical spreading of dengue dis-
ease proposed in the article by Maidana and Yang (2008) [5]. As in that article, the 
mosquito population is divided into subpopulations: winged form (mature female 
mosquitoes) and aquatic form (comprising eggs, larvae and pupae); the human pop-
ulation is divided into the subpopulations: susceptible, infected and removed (or 
immune). On the other hand, differently from the work by Maidana and Yang, who 
considered just the one dimensional case with constant coefficients, in the present we 
allow higher spatial dimensions and also parameters depending on space and time. 
This last generalization is done to cope with possible abiotic effects as variations in 
temperature, humidity, wind velocity, carrier capacities, and so on; thus, the results 
hold for more realistic situations. Moreover, we also consider the effects of additional 
control terms. We perform a rigorous mathematical analysis and present a result 
on existence and uniqueness of solutions of the problem; furthermore, we obtain 
estimates of the solution in terms of certain norms of the given parameters of the 
problem. This kind of result is important for the analysis of optimal control prob-
lems with the given dynamics; to exemplify their utility, we also briefly describe 
how they can be used to show the existence of optimal controls that minimize a 
given optimality criteria.
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1. Introduction

The main objective of this work is to perform a rigorous mathematical analysis of a system of nonlinear 
partial differential equations corresponding to a generalization of a mathematical model for geographical 
spreading of dengue disease proposed by Maidana and Yang in [5].

To describe the model, let Ω ⊂ R
n, n = 1, 2, 3, be an open and bounded set associated to a geographical 

region where a certain human population is settled and the Aedes aegypti mosquito population is spreading; 
let also 0 < T̄ < ∞ be a given final time of interest and denote by t̄ the times between [0, T̄ ] and Q̄ =
Ω × (0, T̄ ), the space–time cylinder and Γ̄ = ∂Ω × (0, T̄ ), the space–time boundary. Then, the system of 
equations we are considering is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(1.1)

holding in Q̄, together with the following given boundary and initial conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(·) = 0 on Γ̄,

M̄S(·, 0) = M̄S0(·) on Ω
M̄I(·, 0) = M̄I0(·) on Ω
Ā(·, 0) = Ā0(·) on Ω,

H̄(·, 0) = H̄0(·) on Ω,

Ī(·, 0) = Ī0(·) on Ω,

R̄(·, 0) = R̄0(·) on Ω.

(1.2)

Here, ∂
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n∑

i,j=1
ηiD̄

M
ij

∂

∂xj
, where η = (η1, . . . , ηn) is the unitary exterior normal to Ω at the boundary.

As in Maidana and Yang [5], the mosquito population is divided into subpopulations: winged form 
(mature female mosquitoes) and aquatic form (comprising eggs, larvae and pupae); their spatial densities 
are denoted by M̄(x, ̄t) and Ā(x, ̄t), respectively. In the winged population we consider the susceptible and 
infected forms, whose spatial densities are respectively denoted by M̄S(x, ̄t) and M̄I(x, ̄t), and we obviously 
have M̄(x, ̄t) = M̄S(x, ̄t) + M̄I(x, ̄t).

Concerning the human population, again as in Maidana and Yang [5], it is divided into the subpopulations: 
susceptible, infected and removed (or immune); their respective spatial densities are denoted by H̄(x, ̄t), 
Ī(x, ̄t) and R̄(x, ̄t); the total human population is N̄(x, ̄t) = H̄(x, ̄t) + Ī(x, ̄t) + R̄(x, ̄t).
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