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We consider a two-dimensional motion of a thin film flowing down an inclined plane 
under the influence of the gravity and the surface tension. In order to investigate 
the stability of such flow, we often use a thin film approximation, which is an 
approximation obtained by the perturbation expansion with respect to the aspect 
ratio of the film. The famous examples of the approximate equations are the 
Burgers equation, Kuramoto–Sivashinsky equation, KdV–Burgers equation, KdV–
Kuramoto–Sivashinsky equation, and so on. In this paper, we give a mathematically 
rigorous justification of a thin film approximation by establishing an error estimate 
between the solution of the Navier–Stokes equations and those of approximate 
equations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a two-dimensional motion of a liquid film of a viscous and incompressible 
fluid flowing down an inclined plane under the influence of the gravity and the surface tension on the 
interface. The motion can be mathematically formulated as a free boundary problem for the incompressible 
Navier–Stokes equations. We assume that the domain Ω(t) occupied by the liquid at time t ≥ 0, the liquid 
surface Γ(t), and the rigid plane Σ are of the form

⎧⎪⎨
⎪⎩

Ω(t) = {(x, y) ∈ R
2 | 0 < y < h0 + η(x, t)},

Γ(t) = {(x, y) ∈ R
2 | y = h0 + η(x, t)},

Σ = {(x, y) ∈ R
2| y = 0},
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where h0 is the mean thickness of the liquid film and η(x, t) is the amplitude of the liquid surface. Here we 
choose a coordinate system (x, y) so that x axis is pointed to the streamwise direction and y axis is normal 
to the plane. We consider fluctuations of the Nusselt flat film solution, which is the stationary laminar flow 
given by

η1 = 0, u1 = (ρg sinα/2μ)(2h0y − y2), v1 = 0, p1 = p0 − ρg cosα(y − h0), (1.1)

where ρ is a constant density of the liquid, g is the acceleration of the gravity, α is the angle of inclination, 
μ is the shear viscosity coefficient, and p0 is an atmospheric pressure. Throughout this paper, we assume 
that the flow is l0-periodic in the streamwise direction x. Rescaling the independent and dependent variables 
by using h0, l0, the typical amplitude of the liquid surface a0, U0 = ρgh2

0 sinα/2μ, and P0 = ρgh0 sinα, the 
equations are written in the non-dimensional form

⎧⎨
⎩ δut +

(
(ū + εu) · ∇δ

)
u + (u · ∇δ)ū + 2

R∇δp−
1
RΔδu = 0 in Ωε(t), t > 0,

∇δ · u = 0 in Ωε(t), t > 0,
(1.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Dδ(εu + ū) − εpI

)
n

=
(
− 1

tanα
εη + δ2W

sinα

εηxx

(1 + (εδηx)2) 3
2

)
n on Γε(t), t > 0,

ηt +
(
1 − (εη)2 + εu

)
ηx − v = 0 on Γε(t), t > 0,

(1.3)

u = 0 on Σ, t > 0. (1.4)

Here, δ, ε, R, and W are non-dimensional parameters defined by

δ = h0

l0
, ε = a0

h0
, R = ρU0h0

μ
, W = σ

ρgh2
0
,

where σ is the surface tension coefficient. Note that δ is the aspect ratio of the film, ε represents the 
magnitude of nonlinearity, R is the Reynolds number, and W is the Weber number. Moreover, we used 
notations u = (u, δv)T, ū = (ū, 0)T, ū = 2y − y2, ∇δ = (δ∂x, ∂y)T, Δδ = ∇δ · ∇δ, Dδf = 1

2
{
∇δ(fT) +(

∇δ(fT)
)T}, and n = (−εδηx, 1)T. In this scaling, the liquid domain Ωε(t) and the liquid surface Γε(t) are 

of the form
{

Ωε(t) = {(x, y) ∈ R
2 | 0 < y < 1 + εη(x, t)},

Γε(t) = {(x, y) ∈ R
2 | y = 1 + εη(x, t)}.

Concerning a mathematical analysis of the problem in the case of δ = ε = 1, Teramoto [15] showed that the 
initial value problem to the Navier–Stokes equations (1.2)–(1.4) has a unique solution globally in time under 
the assumptions that the Reynolds number and the initial data are sufficiently small. Nishida, Teramoto, 
and Win [11] showed the exponential stability of the Nusselt flat film solution under the assumptions that 
the angle of inclination is sufficiently small and x ∈ T in addition to the assumptions in [15]. Furthermore, 
Uecker [16] studied the asymptotic behavior for t → ∞ of the solution in the case of x ∈ R and showed 
that the perturbations of the Nusselt flat film solution decay like the self-similar solution of the Burgers 
equation under the assumptions that the initial data are sufficiently small and R < Rc. Here, Rc = 4

5
1

tan α

is the critical Reynolds number given by Benjamin [2]. On the other hand, Ueno, Shiraishi, and Iguchi [17]
derived a uniform estimate for the solution of (1.2)–(1.4) with respect to δ when the Reynolds number, the 
angle of inclination, and the initial data are sufficiently small.
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