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The paper addresses the questions of existence and asymptotic behavior of solutions 
to the Cauchy problem for the equation

ut − div(D(x)|∇u|p(x)−2∇u) + A(x)|u|q(x)−2u = f(x, t, u).

The coefficients D, A are nonnegative functions which may vanish on a set of zero 
measure in Rn, and A(x) → ∞ as |x| → ∞, f(x, t, u) is globally Lipschitz with 
respect to u. The exponents p, q : R

n �→ (1, ∞) are given measurable functions. We 
prove that the problem admits at least one weak solution in a weighted Sobolev 
space with variable exponents, provided that p− = ess infRn p(x) > max

{
2n
n+2 , 1
}
, 

q− = ess infRn q(x) > 2, A− 2
q(x)−2 ∈ L1(Rn) and D− s

p(x)−s ∈ L1(BR1(0)) with 
constants max

{
1, 2n

n+2

}
< s < min{p−, q−} and R1 > 0. In the case p− > 2, 

q(x) = p(x) a.e. in Rn, and f ≡ f(u), there exists a unique strong solution and the 
problem has a global attractor in L2(Rn).
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1. Introduction

The paper is devoted to study the Cauchy problem for the class of quasilinear degenerate parabolic 
equations with variable nonlinearity and unbounded coefficients. We consider the problem{

ut − divA(x,∇u) + B(x, t, u) = 0 in ST := R
n × (0, T ],

u(x, 0) = u0(x) in R
n,

(1.1)

where the nonlinear terms have the form

A(x,∇u) = D(x)|∇u|p(x)−2∇u, B(x, t, u) = A(x)|u|q(x)−2u− f(x, t, u)

with given measurable on Rn exponents p(x) and q(x), and a given function f . It is assumed throughout 
the paper that

1 < p− := ess inf
Rn

p(x) ≤ p(x) ≤ p+ := ess sup
Rn

p(x) < ∞,

1 < q− := ess inf
Rn

q(x) ≤ q(x) ≤ q+ := ess sup
Rn

q(x) < ∞.
(1.2)

The given coefficients D(x), A(x) are subject to the following restrictions:

H1) D(x), A(x) ∈ L∞
loc(Rn), D(x), A(x) are nonnegative a.e. in R

n,
H2) there exist constants R1 > 0 and β > 0 such that

ess inf{D(x) : x ∈ R
n \BR1(0)} ≥ β,

H3) (a) A
−2

q(x)−2 (x) ∈ L1(Rn),
(b) there is a positive constant s such that

max
{

2n
n + 2 , 1

}
< s < min{p−, q−} and D

−s
p(x)−s (x) ∈ L1(BR1(0)).

The external term f is assumed to satisfy the conditions

H4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x, t, s) : ST × R �→ R is globally Lipschitz-continuous with respect to s

and has linear growth: there is a constant L such that
|f(x, t, u) − f(x, t, v)| ≤ L|u− v| ∀u, v ∈ R, (x, t) ∈ ST ,

|f(x, t, s)| ≤ L|s| + f0(x, t) with some f0 ∈ L2(ST ).

Assumptions H1)–H3) allow the coefficients D and A to vanish on a set of zero measure, moreover, it is 
necessary that A(x) → ∞ as |x| → ∞. An example of the equation whose coefficients meet all the above 
conditions is given by

ut = div
(
|x|α|∇u|p(x)−2∇u

)
− |x|δ(1 + |x|γ)|u|q(x)−2u

with nonnegative constant exponents α, δ, γ satisfying the inequalities

0 ≤ α < n

(
p−

s
− 1
)
, 0 ≤ δ < n

(
q−

2 − 1
)
, δ + γ > n

(
q+

2 − 1
)
.
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