

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Estimates of the extremal solution for the bilaplacian with general nonlinearity

Miguel Angel Navarro¹, Salvador Villegas*,1

Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain

ARTICLE INFO

Article history: Received 11 March 2016 Available online 19 May 2016 Submitted by J. Xiao

Keywords:
Biharmonic
Extremal solution
Radial
Stable

ABSTRACT

Let $\lambda^*>0$ denote the supremum possible value of λ such that $\{\Delta^2 u=\lambda f(u) \text{ in } B_1, u=\frac{\partial u}{\partial n}=0 \text{ on } \partial B_1\}$ has a classical solution, where B_1 is the unit ball in \mathbb{R}^N , n is the exterior unit normal vector, and $f\in C^1(\mathbb{R})$ is nondecreasing and satisfies f(0)>0 and $f(t)/t\to +\infty$ as $t\to +\infty$. For $\lambda=\lambda^*$ this problem possesses a weak solution u^* , the so-called extremal solution. We establish the regularity of this extremal solution for $N\le 10$. For $N\ge 11$ we establish that $\lim_{r\to 0} r^{\frac{N-8}{2}}(u^*)'(r)=\lim_{r\to 0} r^{\frac{N-10}{2}}u^*(r)=0$ for $N\le 19$ and $\lim_{r\to 0} r^{\frac{N-9}{2}}(u^*)'(r)=\lim_{r\to 0} r^{\frac{N-11}{2}}u^*(r)=0$ for $N\ge 20$. Our regularity results do not depend on the specific nonlinearity f.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

This paper is concerned with the stability of radially symmetric and decreasing solutions $u \in H^2(B_1)$ of

$$\begin{cases} \Delta^2 u = \lambda f(u) & \text{in } B_1, \\ u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial B_1, \end{cases}$$
 (1.1_{\delta})

where B_1 is the unit ball of \mathbb{R}^N , n is the exterior unit normal vector, $\lambda \geq 0$ is a parameter, and $f \in C^1(\mathbb{R})$ satisfies

$$f$$
 is nondecreasing, $f(0) > 0$ and $\lim_{t \to +\infty} \frac{f(t)}{t} = +\infty$. (1.2)

E-mail addresses: mnavarro_2@ugr.es (M.A. Navarro), svillega@ugr.es (S. Villegas).

^{*} Corresponding author.

 $^{^{1}\,}$ The authors have been supported by MINECO grant MTM2015-68210-P.

By abuse of notation, we write u(r) instead of u(x), where r = |x| and $x \in \mathbb{R}^N$. We denote by u' the radial derivative of a radial function u.

Definition. We say that $u \in L^1(B_1)$ is a weak solution of (1.1_{λ}) if $f(u) \in L^1(B_1, \delta(x)^2)$ and

$$\int_{B_1} u\Delta^2 \varphi = \lambda \int_{B_2} f(u)\varphi, \, \forall \varphi \in C^4(\overline{B_1}), \, \varphi = \frac{\partial \varphi}{\partial n} = 0 \text{ on } \partial B_1,$$
(1.3)

where $\delta(x) = \operatorname{dist}(x, \partial B_1)$ denotes the distance to the boundary of B_1 .

It is obvious that every C^4 classical solution of (1.1_{λ}) is a weak solution.

Definition. Let u be a solution of (1.1_{λ}) , u is stable if

$$Q_{u}(\xi) := \int_{B_{1}} \left\{ \left| \Delta \xi \right|^{2} - \lambda f'(u) \xi^{2} \right\} \ge 0, \, \forall \xi \in C_{c}^{\infty}(B_{1}).$$
(1.4)

Theorem 1.1 ([9]). There exists $\lambda^* < \infty$ such that:

- i) If $\lambda \in [0, \lambda^*)$, (1.1_{λ}) admits a classical minimal solution u_{λ} .
- ii) If $\lambda > \lambda^*$, there does not exist a classical solution.
- iii) If $\lambda = \lambda^*$, there exists a weak solution $\lim_{\lambda \to \lambda^*} u_{\lambda} = u^* \in L^1(B_1)$ of (1.1_{λ^*}) , called the extremal solution.

The minimal solutions of (1.1_{λ}) are radial and stable (see [9, Prop. 1]), and then u^* is also radial and stable.

In this paper, we study the regularity of the extremal solution u^* . For $f(u) = e^u$ Dávila et al. (see [4]) prove that u^* is bounded if $N \le 12$, and u^* is unbounded if $N \ge 13$.

Theorem 1.2 ([9]). Assume that f satisfies (1.2). Let u^* be the extremal solution of (1.1 $_{\lambda}$). If $N \leq 9$, then u^* is bounded.

It leaves open the question of whether u^* is bounded for general nonlinearities f satisfying (1.2) in dimensions $10 \le N \le 12$.

In this paper we prove the boundedness of u^* in dimension N = 10. In addition, we also establish some estimates of the extremal solution near the origin for $N \ge 11$.

Theorem 1.3. Assume that f satisfies (1.2). Let u^* be the extremal solution of (1.1_{λ}) . We have that:

- i) If N = 10, then u^* is bounded.
- ii) If $11 \le N \le 19$, then

$$\lim_{r \to 0} r^{\frac{N-8}{2}} (u^*)'(r) = \lim_{r \to 0} r^{\frac{N-10}{2}} u^*(r) = 0.$$

iii) If $N \geq 20$, then

$$\lim_{r \to 0} r^{\frac{N-9}{2}} (u^*)'(r) = \lim_{r \to 0} r^{\frac{N-11}{2}} u^*(r) = 0.$$

Download English Version:

https://daneshyari.com/en/article/4613930

Download Persian Version:

https://daneshyari.com/article/4613930

<u>Daneshyari.com</u>