

Estimates of the extremal solution for the bilaplacian with general nonlinearity

Miguel Angel Navarro ${ }^{1}$, Salvador Villegas ${ }^{*, 1}$
Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain

A R T I C L E I N F O

Article history:

Received 11 March 2016
Available online 19 May 2016
Submitted by J. Xiao

Keywords:

Biharmonic
Extremal solution
Radial
Stable

Abstract

Let $\lambda^{*}>0$ denote the supremum possible value of λ such that $\left\{\Delta^{2} u=\lambda f(u)\right.$ in B_{1}, $u=\frac{\partial u}{\partial n}=0$ on $\left.\partial B_{1}\right\}$ has a classical solution, where B_{1} is the unit ball in \mathbb{R}^{N}, n is the exterior unit normal vector, and $f \in C^{1}(\mathbb{R})$ is nondecreasing and satisfies $f(0)>0$ and $f(t) / t \rightarrow+\infty$ as $t \rightarrow+\infty$. For $\lambda=\lambda^{*}$ this problem possesses a weak solution u^{*}, the so-called extremal solution. We establish the regularity of this extremal solution for $N \leq 10$. For $N \geq 11$ we establish that $\lim _{r \rightarrow 0} r^{\frac{N-8}{2}}\left(u^{*}\right)^{\prime}(r)=\lim _{r \rightarrow 0} r^{\frac{N-10}{2}} u^{*}(r)=0$ for $N \leq 19$ and $\lim _{r \rightarrow 0} r^{\frac{N-9}{2}}\left(u^{*}\right)^{\prime}(r)=\lim _{r \rightarrow 0} r^{\frac{N-11}{2}} u^{*}(r)=0$ for $N \geq 20$. Our regularity results do not depend on the specific nonlinearity f.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

This paper is concerned with the stability of radially symmetric and decreasing solutions $u \in H^{2}\left(B_{1}\right)$ of

$$
\left\{\begin{array}{l}
\Delta^{2} u=\lambda f(u) \quad \text { in } B_{1} \\
u=\frac{\partial u}{\partial n}=0 \quad \text { on } \partial B_{1}
\end{array}\right.
$$

where B_{1} is the unit ball of \mathbb{R}^{N}, n is the exterior unit normal vector, $\lambda \geq 0$ is a parameter, and $f \in C^{1}(\mathbb{R})$ satisfies

$$
\begin{equation*}
f \text { is nondecreasing, } f(0)>0 \text { and } \lim _{t \rightarrow+\infty} \frac{f(t)}{t}=+\infty \tag{1.2}
\end{equation*}
$$

[^0]By abuse of notation, we write $u(r)$ instead of $u(x)$, where $r=|x|$ and $x \in \mathbb{R}^{N}$. We denote by u^{\prime} the radial derivative of a radial function u.

Definition. We say that $u \in L^{1}\left(B_{1}\right)$ is a weak solution of $\left(1.1_{\lambda}\right)$ if $f(u) \in L^{1}\left(B_{1}, \delta(x)^{2}\right)$ and

$$
\begin{equation*}
\int_{B_{1}} u \Delta^{2} \varphi=\lambda \int_{B_{1}} f(u) \varphi, \forall \varphi \in C^{4}\left(\overline{B_{1}}\right), \varphi=\frac{\partial \varphi}{\partial n}=0 \text { on } \partial B_{1}, \tag{1.3}
\end{equation*}
$$

where $\delta(x)=\operatorname{dist}\left(x, \partial B_{1}\right)$ denotes the distance to the boundary of B_{1}.
It is obvious that every C^{4} classical solution of $\left(1.1_{\lambda}\right)$ is a weak solution.
Definition. Let u be a solution of $\left(1.1_{\lambda}\right), u$ is stable if

$$
\begin{equation*}
Q_{u}(\xi):=\int_{B_{1}}\left\{|\Delta \xi|^{2}-\lambda f^{\prime}(u) \xi^{2}\right\} \geq 0, \forall \xi \in C_{c}^{\infty}\left(B_{1}\right) \tag{1.4}
\end{equation*}
$$

Theorem 1.1 ([9]). There exists $\lambda^{*}<\infty$ such that:
i) If $\lambda \in\left[0, \lambda^{*}\right)$, (1.1 λ_{λ} admits a classical minimal solution u_{λ}.
ii) If $\lambda>\lambda^{*}$, there does not exist a classical solution.
iii) If $\lambda=\lambda^{*}$, there exists a weak solution $\lim _{\lambda \rightarrow \lambda^{*}} u_{\lambda}=u^{*} \in L^{1}\left(B_{1}\right)$ of $\left(1.1_{\lambda^{*}}\right)$, called the extremal solution.

The minimal solutions of $\left(1.1_{\lambda}\right)$ are radial and stable (see [9, Prop. 1]), and then u^{*} is also radial and stable.

In this paper, we study the regularity of the extremal solution u^{*}. For $f(u)=e^{u}$ Dávila et al. (see [4]) prove that u^{*} is bounded if $N \leq 12$, and u^{*} is unbounded if $N \geq 13$.

Theorem 1.2 ([9]). Assume that f satisfies (1.2). Let u^{*} be the extremal solution of (1.1 $)_{\lambda}$. If $N \leq 9$, then u^{*} is bounded.

It leaves open the question of whether u^{*} is bounded for general nonlinearities f satisfying (1.2) in dimensions $10 \leq N \leq 12$.

In this paper we prove the boundedness of u^{*} in dimension $N=10$. In addition, we also establish some estimates of the extremal solution near the origin for $N \geq 11$.

Theorem 1.3. Assume that f satisfies (1.2). Let u^{*} be the extremal solution of (1.1 $)_{\lambda}$. We have that:
i) If $N=10$, then u^{*} is bounded.
ii) If $11 \leq N \leq 19$, then

$$
\lim _{r \rightarrow 0} r^{\frac{N-8}{2}}\left(u^{*}\right)^{\prime}(r)=\lim _{r \rightarrow 0} r^{\frac{N-10}{2}} u^{*}(r)=0 .
$$

iii) If $N \geq 20$, then

$$
\lim _{r \rightarrow 0} r^{\frac{N-9}{2}}\left(u^{*}\right)^{\prime}(r)=\lim _{r \rightarrow 0} r^{\frac{N-11}{2}} u^{*}(r)=0 .
$$

https://daneshyari.com/en/article/4613930

Download Persian Version:
https://daneshyari.com/article/4613930

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mnavarro_2@ugr.es (M.A. Navarro), svillega@ugr.es (S. Villegas).
 ${ }^{1}$ The authors have been supported by MINECO grant MTM2015-68210-P.

