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In this paper we study the attenuated X-ray transform of 2-tensors supported in 
convex bounded subsets with sufficiently smooth boundary in the Euclidean plane. 
We characterize its range and reconstruct all possible 2-tensors yielding identical 
X-ray data. The characterization is in terms of a Hilbert-transform associated with 
A-analytic maps in the sense of Bukhgeim.
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1. Introduction

This paper concerns the range characterization of the attenuated X-ray transform of symmetric 2-tensors 
in the plane. Range characterization of the non-attenuated X-ray transform of functions (0-tensors) in the 
Euclidean space has been long known [8,9,14], whereas in the case of a constant attenuation some range 
conditions can be inferred from [13,1,2]. For a varying attenuation the two dimensional case has been 
particularly interesting with inversion formulas requiring new analytical tools: the theory of A-analytic 
maps originally employed in [3], and ideas from inverse scattering in [17], see also [16]. Constraints on the 
range for the two dimensional X-ray transform of functions were given in [18,4], and a range characterization 
based on Bukhgeim’s theory of A-analytic maps was given in [23].

Inversion of the X-ray transform of higher order tensors has been formulated directly in the setting 
of Riemmanian manifolds with boundary [26]. The case of 2-tensors appears in the linearization of the 
boundary rigidity problem. It is easy to see that injectivity can hold only in some restricted class: e.g., 
the class of solenoidal tensors. For two dimensional simple manifolds with boundary, injectivity with in the 
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Fig. 1. Definition of Γ±.

solenoidal tensor fields has been established fairly recent: in the non-attenuated case for 0- and 1-tensors we 
mention the breakthrough result in [22], and in the attenuated case in [25]; see also [10] for a more general 
weighted transform. Inversion for the attenuated X-ray transform for solenoidal tensors of rank two and 
higher can be found in [19], with a range characterization in [20]. In the Euclidean case we mention an 
earlier inversion of the attenuated X-ray transform of solenoidal tensors in [11,12]; however this work does 
not address range characterization.

Different from the recent characterization in terms of the scattering relation in [20], in this paper the range 
conditions are in terms of the Hilbert-transform for A-analytic maps introduced in [23,24], built on work 
in [27–29]. Our characterization can be understood as an explicit description of the scattering relation in 
[21,19,20] particularized to the Euclidean setting. In the sufficiency part we reconstruct all possible 2-tensors 
yielding identical X-ray data; see (30) for the non-attenuated case and (82) for the attenuated case.

For a real symmetric 2-tensor F ∈ L1(R2; R2×2),

F(x) =
(
f11(x) f12(x)
f12(x) f22(x)

)
, x ∈ R

2, (1)

and a real valued function a ∈ L1(R2), the a-attenuated X-ray transform of F is defined by

XaF(x, θ) :=
∞∫

−∞

〈F(x + tθ) θ, θ〉 exp

⎧⎨
⎩−

∞∫
t

a(x + sθ)ds

⎫⎬
⎭ dt, (2)

where θ is a direction in the unit sphere S1, and 〈·, ·〉 is the scalar product in R2. For the non-attenuated
case a ≡ 0 we use the notation XF.

In this paper, we consider F to be defined on a strongly convex bounded set Ω ⊂ R
2 with vanishing 

trace at the boundary Γ; further regularity and the order of vanishing will be specified in the theorems. In 
particular, in the attenuated case we assume that Γ is C2,α, α > 1

2 smooth. We also assume a > 0 in Ω.
For any (x, θ) ∈ Ω × S1 let τ(x, θ) be length of the chord in the direction of θ passing through x. Let 

also consider the incoming (−), respectively outgoing (+) submanifolds of the unit bundle restricted to the 
boundary (see Fig. 1)

Γ± := {(x, θ) ∈ Γ × S1 : ±θ · n(x) > 0}, (3)

and the variety

Γ0 := {(x, θ) ∈ Γ × S1 : θ · n(x) = 0}, (4)

where n(x) denotes outer normal.
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