Equivalent norms in polynomial spaces and applications

Gustavo Araújo ${ }^{\text {a,1 }}$, P. Jiménez-Rodríguez ${ }^{\text {b }}$, Gustavo A. Muñoz-Fernández ${ }^{\mathrm{c}, 2}$, Juan B. Seoane-Sepúlveda ${ }^{\text {d,c,*,2 }}$
${ }^{a}$ Unidade Acadêmica de Ciências Exatas e da Natureza, CFP, Universidade Federal de Campina Grande, Cajazeiras, PB, 58900-000, Brazil
b Department of Mathematical Sciences, Kent State University, Kent, OH, 44242, USA
c Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3,
Universidad Complutense de Madrid, Madrid, 28040, Spain
d Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain

A R T I C L E I N F O

Article history:

Received 6 November 2015
Available online 17 March 2016
Submitted by J.A. Ball
Dedicated to our advisor, colleague and friend Richard M. Aron

Keywords:

Norms
Absolutely summing operators
Bohnenblust-Hille inequality
Hardy-Littlewood inequality

A B S T R A C T

In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy-Littlewood constants for 2 -homogeneous polynomials on ℓ_{p}^{2} spaces, $2<p \leq \infty$. We also provide lower estimates for the Hardy-Littlewood constants for polynomials of higher degrees.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$, and define $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$. Let $\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$ be the finite dimensional linear space of all homogeneous polynomials of degree m on $\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C})$. If \mathbf{x}^{α} stands for the monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}$ and $P \in \mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$, then P can be written as

$$
\begin{equation*}
P(\mathbf{x})=\sum_{|\alpha|=m} a_{\alpha} \mathbf{x}^{\alpha} . \tag{1.1}
\end{equation*}
$$

[^0]If $|\cdot|$ is a norm on \mathbb{K}^{n}, then

$$
\|P\|:=\sup _{x \in B_{X}}|P(x)|,
$$

where B_{X} is the closed unit ball of the Banach space $X=\left(\mathbb{K}^{n},|\cdot|\right)$, defines a norm in $\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$ usually called polynomial norm. The space $\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$ endowed with the polynomial norm induced by X is denoted by $\mathcal{P}\left({ }^{m} X\right)$. Equivalent norms within the real and complex settings have been the aim of many researchers since the 20th century (see, e.g. [5,6]). Other norms customarily used in $\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$ besides the polynomial norm are the ℓ_{q} norms of the coefficients, i.e., if P is as in (1.1) and $q \geq 1$, then

$$
|P|_{q}:= \begin{cases}\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{q}\right)^{\frac{1}{q}} & \text { if } 1 \leq q<+\infty \\ \max \left\{\left|a_{\alpha}\right|:|\alpha|=m\right\} & \text { if } q=+\infty\end{cases}
$$

defines another norm in $\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$. It is interesting to observe that the ℓ_{q} norms are equivalent on \mathbb{K}^{n} and that we have the following well known sharp estimates:

$$
|\cdot|_{q} \leq|\cdot|_{s} \leq n^{\frac{1}{s}-\frac{1}{q}}|\cdot|_{q}
$$

for $1 \leq s \leq q$.
The polynomial norm $\|P\|$ is most of the times very difficult to compute, whereas the ℓ_{q} norm of the coefficients $|P|_{q}$ can be obtained straightforwardly. For this reason it would be convenient to have a good estimate of $\|P\|$ in terms of $|P|_{q}$. If $\|\cdot\|_{p}$ represents the polynomial norm of $\mathcal{P}\left({ }^{m} \ell_{p}^{n}\right)$, this paper is devoted to obtain sharp estimates on $\|\cdot\|_{p}(1 \leq p \leq+\infty)$ by comparison with the norm $|\cdot|_{q}(1 \leq q \leq+\infty)$. Actually since all norms in finite dimensional spaces are equivalent, the polynomial norm $\|\cdot\|_{p}$ and the ℓ_{q} norm $|\cdot|_{q}$ of the coefficients are equivalent in $\mathcal{P}\left({ }^{m} \mathbb{R}^{n}\right)$ for all $1 \leq p, q \leq+\infty$, and therefore there exist constants $k>0$ and $K>0$ such that

$$
\begin{equation*}
k\|P\|_{p} \leq|P|_{q} \leq K\|P\|_{p} \tag{1.2}
\end{equation*}
$$

for all $P \in \mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$. If $B_{|\cdot|_{q}}$ and $B_{\|\cdot\|_{p}}$ denote, respectively, the closed unit ball of the spaces $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),|\cdot|_{q}\right)$ and $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),\|\cdot\|_{p}\right)$, then (1.2) shows that the mapping $B_{|\cdot| q} \ni P \mapsto\|P\|_{p}$ is bounded by $\frac{1}{k}$ whereas the mapping $B_{\|\cdot\|_{p}} \ni P \mapsto|P|_{q}$ is bounded by K. Also, the continuity of $P \mapsto\|P\|_{p}$ and $P \mapsto|P|_{q}$ over $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),|\cdot|_{q}\right)$ and $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),\|\cdot\|_{p}\right)$ respectively, together with the fact that the closed unit balls of the spaces $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),|\cdot|_{q}\right)$ and $\left(\mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right),\|\cdot\|_{p}\right)$ are compact justify, the following definitions:

Definition 1.1. If $1 \leq p, q \leq+\infty$ then we define

$$
\begin{aligned}
k_{m, n, q, p}^{\prime} & :=\max \left\{\|P\|_{p}: P \in B_{|\cdot|_{q}}\right\}, \\
K_{m, n, q, p} & :=\max \left\{|P|_{q}: P \in B_{\|\cdot\|_{p}}\right\} .
\end{aligned}
$$

Since $k_{m, n, q, p}^{\prime}>0$, we can define $k_{m, n, q, p}:=\frac{1}{k_{m, n, q, p}^{\prime}}$. Also, we say that $P \in \mathcal{P}\left({ }^{m} \mathbb{K}^{n}\right)$ is extremal for $k_{m, n, q, p}^{\prime}$, $k_{m, n, q, p}$ or $K_{m, n, q, p}$, if $\|P\|_{p}=k_{m, n, q, p}^{\prime}|P|_{q}, k_{m, n, q, p}^{m, n, q,}\|P\|_{p}=|P|_{q}$ or $|P|_{q}=K_{m, n, q, p}\|P\|_{p}$, respectively.

Observe that $k_{m, n, q, p}$ is the biggest k fitting in the first inequality in (1.2) whereas $K_{m, n, q, p}$ is the smallest possible K in the second inequality in (1.2). Also, if a polynomial is extremal for $k_{m, n, q, p}^{\prime}, k_{m, n, q, p}$ or $K_{m, n, q, p}$, then its multiples are also extremal.

https://daneshyari.com/en/article/4613979

Download Persian Version:
https://daneshyari.com/article/4613979

Daneshyari.com

[^0]: * Corresponding author at: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, Madrid, 28040, Spain.

 E-mail addresses: gdasaraujo@gmail.com (G. Araújo), pjimene1@kent.edu (P. Jiménez-Rodríguez), gustavo_fernandez@mat.ucm.es (G.A. Muñoz-Fernández), jseoane@mat.ucm.es (J.B. Seoane-Sepúlveda).
 ${ }^{1}$ Supported by PDSE/CAPES 8015/14-7.
 2 Supported by the Spanish Ministry of Science and Innovation, grant MTM2012-34341.
 http://dx.doi.org/10.1016/j.jmaa.2016.03.039
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

