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1. Introduction

Let a = (o, ...,a,) € (NU{0})", and define |a| := a3 + - - -+ ay,. Let P(™K"™) be the finite dimensional
linear space of all homogeneous polynomials of degree m on K" (K = R or K = C). If x* stands for the
monomial z7* -z~ for x = (x1,...,2,) € K" and P € P("K"), then P can be written as

P(x)= Y aox”. (1.1)

|a]=m
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If | - | is a norm on K", then

[P := sup |[P(z)],

rxE€Bx

where By is the closed unit ball of the Banach space X = (K", |- ), defines a norm in P(™K"™) usually
called polynomial norm. The space P("™K") endowed with the polynomial norm induced by X is denoted
by P(™X). Equivalent norms within the real and complex settings have been the aim of many researchers
since the 20th century (see, e.g. [5,6]). Other norms customarily used in P(™K"™) besides the polynomial
norm are the ¢, norms of the coefficients, i.e., if P is as in (1.1) and ¢ > 1, then

1
|P|, = (Zla\:mma‘q)q if 1 < g < +oo,
q-=

max{|aq| : |o| =m} if ¢ = o0,

defines another norm in P("™K"). It is interesting to observe that the ¢, norms are equivalent on K" and
that we have the following well known sharp estimates:

g <1l <me7a g,
for 1 <s<gq.

The polynomial norm || P|| is most of the times very difficult to compute, whereas the ¢, norm of the
coefficients |P|, can be obtained straightforwardly. For this reason it would be convenient to have a good
estimate of || P|| in terms of |P[,. If || - ||, represents the polynomial norm of P("™£y), this paper is devoted
to obtain sharp estimates on |- ||, (1 < p < 4+00) by comparison with the norm |- |, (1 < ¢ < 400). Actually
since all norms in finite dimensional spaces are equivalent, the polynomial norm || - ||, and the ¢, norm | - |,

of the coeflicients are equivalent in P(™R"™) for all 1 < p, ¢ < +00, and therefore there exist constants k > 0
and K > 0 such that

kl|[Pllp < |[Plg < K|[Pllp, (1.2)

for all P € P(™K"). If B),|, and By, denote, respectively, the closed unit ball of the spaces (P (mK") [1q)
and (P(™K"),|| - [[p), then (1.2) shows that the mapping B, > P ~ |[|P|, is bounded by + whereas
the mapping B, > P ~ |P|, is bounded by K. Also, the continuity of P ~ ||P|, and P ~ |P|, over
(P(MK™),| - |q) and (P(™K™), || - |lp) respectively, together with the fact that the closed unit balls of the
spaces (P("™K"),|-|q) and (P(™K"),| - ||,) are compact justify, the following definitions:

Definition 1.1. If 1 < p, ¢ < 400 then we define

ky,,. 7max{||PHp:P€B|.‘q},

Km,n,q,p :=max {|P|,: P € By}

Since k| > 0, we can define Ky, n q,p 1= k,— Also, we say that P € P(™K") is extremal for k]

m,n,q,p m,n,q,p’

n,q,p
kmonqp OF Kmongp, i |Pllp = k7, 4, p|P|q7 man,apl| Pllp = [Plg or [Plg = K nqpllPllp, respectively.

Observe that k.,..q,p is the biggest k fitting in the first inequality in (1.2) whereas K, n qp is the
smallest possible K in the second inequality in (1.2). Also, if a polynomial is extremal for k!, nag,p Fmongp
or K, n,qp, then its multiples are also extremal.
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