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In this paper, equivalence constants between various polynomial norms are 
calculated. As an application, we also obtain sharp values of the Hardy–Littlewood 
constants for 2-homogeneous polynomials on �2p spaces, 2 < p ≤ ∞. We also 
provide lower estimates for the Hardy–Littlewood constants for polynomials of 
higher degrees.
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1. Introduction

Let α = (α1, . . . , αn) ∈ (N ∪{0})n, and define |α| := α1 + · · ·+αn. Let P(mK
n) be the finite dimensional 

linear space of all homogeneous polynomials of degree m on Kn (K = R or K = C). If xα stands for the 
monomial xα1

1 · · ·xαn
n for x = (x1, . . . , xn) ∈ K

n and P ∈ P(mK
n), then P can be written as

P (x) =
∑

|α|=m

aαxα. (1.1)

* Corresponding author at: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, 
Universidad Complutense de Madrid, Madrid, 28040, Spain.

E-mail addresses: gdasaraujo@gmail.com (G. Araújo), pjimene1@kent.edu (P. Jiménez-Rodríguez), 
gustavo_fernandez@mat.ucm.es (G.A. Muñoz-Fernández), jseoane@mat.ucm.es (J.B. Seoane-Sepúlveda).
1 Supported by PDSE/CAPES 8015/14-7.
2 Supported by the Spanish Ministry of Science and Innovation, grant MTM2012-34341.

http://dx.doi.org/10.1016/j.jmaa.2016.03.039
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.03.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:gdasaraujo@gmail.com
mailto:pjimene1@kent.edu
mailto:gustavo_fernandez@mat.ucm.es
mailto:jseoane@mat.ucm.es
http://dx.doi.org/10.1016/j.jmaa.2016.03.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.03.039&domain=pdf


G. Araújo et al. / J. Math. Anal. Appl. 445 (2017) 1200–1220 1201

If | · | is a norm on Kn, then

‖P‖ := sup
x∈BX

|P (x)|,

where BX is the closed unit ball of the Banach space X = (Kn, | · |), defines a norm in P(mK
n) usually 

called polynomial norm. The space P(mK
n) endowed with the polynomial norm induced by X is denoted 

by P(mX). Equivalent norms within the real and complex settings have been the aim of many researchers 
since the 20th century (see, e.g. [5,6]). Other norms customarily used in P(mK

n) besides the polynomial 
norm are the �q norms of the coefficients, i.e., if P is as in (1.1) and q ≥ 1, then

|P |q :=

⎧⎨
⎩
(∑

|α|=m |aα|q
) 1

q if 1 ≤ q < +∞,

max{|aα| : |α| = m} if q = +∞,

defines another norm in P(mK
n). It is interesting to observe that the �q norms are equivalent on Kn and 

that we have the following well known sharp estimates:

| · |q ≤ | · |s ≤ n
1
s− 1

q | · |q,

for 1 ≤ s ≤ q.
The polynomial norm ‖P‖ is most of the times very difficult to compute, whereas the �q norm of the 

coefficients |P |q can be obtained straightforwardly. For this reason it would be convenient to have a good 
estimate of ‖P‖ in terms of |P |q. If ‖ · ‖p represents the polynomial norm of P(m�np ), this paper is devoted 
to obtain sharp estimates on ‖ ·‖p (1 ≤ p ≤ +∞) by comparison with the norm | · |q (1 ≤ q ≤ +∞). Actually 
since all norms in finite dimensional spaces are equivalent, the polynomial norm ‖ · ‖p and the �q norm | · |q
of the coefficients are equivalent in P(mR

n) for all 1 ≤ p, q ≤ +∞, and therefore there exist constants k > 0
and K > 0 such that

k‖P‖p ≤ |P |q ≤ K‖P‖p, (1.2)

for all P ∈ P(mK
n). If B|·|q and B‖·‖p

denote, respectively, the closed unit ball of the spaces (P(mK
n), | · |q)

and (P(mK
n), ‖ · ‖p), then (1.2) shows that the mapping B|·|q � P 	→ ‖P‖p is bounded by 1

k whereas 
the mapping B‖·‖p

� P 	→ |P |q is bounded by K. Also, the continuity of P 	→ ‖P‖p and P 	→ |P |q over 
(P(mK

n), | · |q) and (P(mK
n), ‖ · ‖p) respectively, together with the fact that the closed unit balls of the 

spaces (P(mK
n), | · |q) and (P(mK

n), ‖ · ‖p) are compact justify, the following definitions:

Definition 1.1. If 1 ≤ p, q ≤ +∞ then we define

k′m,n,q,p : = max
{
‖P‖p : P ∈ B|·|q

}
,

Km,n,q,p : = max
{
|P |q : P ∈ B‖·‖p

}
.

Since k′m,n,q,p > 0, we can define km,n,q,p := 1
k′
m,n,q,p

. Also, we say that P ∈ P(mK
n) is extremal for k′m,n,q,p, 

km,n,q,p or Km,n,q,p, if ‖P‖p = k′m,n,q,p|P |q, km,n,q,p‖P‖p = |P |q or |P |q = Km,n,q,p‖P‖p, respectively.

Observe that km,n,q,p is the biggest k fitting in the first inequality in (1.2) whereas Km,n,q,p is the 
smallest possible K in the second inequality in (1.2). Also, if a polynomial is extremal for k′m,n,q,p, km,n,q,p

or Km,n,q,p, then its multiples are also extremal.
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