

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Equivalent norms in polynomial spaces and applications

霐

Gustavo Araújo^{a,1}, P. Jiménez-Rodríguez^b, Gustavo A. Muñoz-Fernández^{c,2}, Juan B. Seoane-Sepúlveda^{d,c,*,2}

^a Unidade Acadêmica de Ciências Exatas e da Natureza, CFP, Universidade Federal de Campina Grande, Cajazeiras, PB, 58900-000, Brazil

^b Department of Mathematical Sciences, Kent State University, Kent, OH, 44242, USA

^c Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3,

Universidad Complutense de Madrid, Madrid, 28040, Spain

^d Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain

ARTICLE INFO

Article history: Received 6 November 2015 Available online 17 March 2016 Submitted by J.A. Ball

Dedicated to our advisor, colleague and friend Richard M. Aron

Keywords: Norms Absolutely summing operators Bohnenblust-Hille inequality Hardy-Littlewood inequality

ABSTRACT

In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy–Littlewood constants for 2-homogeneous polynomials on ℓ_p^2 spaces, 2 . We also provide lower estimates for the Hardy–Littlewood constants for polynomials of higher degrees.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, and define $|\alpha| := \alpha_1 + \cdots + \alpha_n$. Let $\mathcal{P}(^m \mathbb{K}^n)$ be the finite dimensional linear space of all homogeneous polynomials of degree m on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). If \mathbf{x}^{α} stands for the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{K}^n$ and $P \in \mathcal{P}(^m \mathbb{K}^n)$, then P can be written as

$$P(\mathbf{x}) = \sum_{|\alpha|=m} a_{\alpha} \mathbf{x}^{\alpha}.$$
 (1.1)

^{*} Corresponding author at: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, Madrid, 28040, Spain.

E-mail addresses: gdasaraujo@gmail.com (G. Araújo), pjimenel@kent.edu (P. Jiménez-Rodríguez),

gustavo_fernandez@mat.ucm.es (G.A. Muñoz-Fernández), jseoane@mat.ucm.es (J.B. Seoane-Sepúlveda).

¹ Supported by PDSE/CAPES 8015/14-7.

² Supported by the Spanish Ministry of Science and Innovation, grant MTM2012-34341.

If $|\cdot|$ is a norm on \mathbb{K}^n , then

$$||P|| := \sup_{x \in B_X} |P(x)|,$$

where B_X is the closed unit ball of the Banach space $X = (\mathbb{K}^n, |\cdot|)$, defines a norm in $\mathcal{P}(^m\mathbb{K}^n)$ usually called polynomial norm. The space $\mathcal{P}(^m\mathbb{K}^n)$ endowed with the polynomial norm induced by X is denoted by $\mathcal{P}(^mX)$. Equivalent norms within the real and complex settings have been the aim of many researchers since the 20th century (see, e.g. [5,6]). Other norms customarily used in $\mathcal{P}(^m\mathbb{K}^n)$ besides the polynomial norm are the ℓ_q norms of the coefficients, i.e., if P is as in (1.1) and $q \ge 1$, then

$$|P|_q := \begin{cases} \left(\sum_{|\alpha|=m} |a_{\alpha}|^q\right)^{\frac{1}{q}} & \text{if } 1 \le q < +\infty, \\ \max\{|a_{\alpha}| : |\alpha|=m\} & \text{if } q = +\infty, \end{cases}$$

defines another norm in $\mathcal{P}(^{m}\mathbb{K}^{n})$. It is interesting to observe that the ℓ_{q} norms are equivalent on \mathbb{K}^{n} and that we have the following well known sharp estimates:

$$|\cdot|_q \le |\cdot|_s \le n^{\frac{1}{s} - \frac{1}{q}} |\cdot|_q,$$

for $1 \leq s \leq q$.

The polynomial norm ||P|| is most of the times very difficult to compute, whereas the ℓ_q norm of the coefficients $|P|_q$ can be obtained straightforwardly. For this reason it would be convenient to have a good estimate of ||P|| in terms of $|P|_q$. If $|| \cdot ||_p$ represents the polynomial norm of $\mathcal{P}(^m \ell_p^n)$, this paper is devoted to obtain sharp estimates on $|| \cdot ||_p$ ($1 \le p \le +\infty$) by comparison with the norm $|| \cdot ||_q$ ($1 \le q \le +\infty$). Actually since all norms in finite dimensional spaces are equivalent, the polynomial norm $|| \cdot ||_p$ and the ℓ_q norm $|| \cdot ||_q$ of the coefficients are equivalent in $\mathcal{P}(^m \mathbb{R}^n)$ for all $1 \le p, q \le +\infty$, and therefore there exist constants k > 0 and K > 0 such that

$$k\|P\|_{p} \le |P|_{q} \le K\|P\|_{p},\tag{1.2}$$

for all $P \in \mathcal{P}(^m \mathbb{K}^n)$. If $B_{\|\cdot\|_q}$ and $B_{\|\cdot\|_p}$ denote, respectively, the closed unit ball of the spaces $(\mathcal{P}(^m \mathbb{K}^n), |\cdot|_q)$ and $(\mathcal{P}(^m \mathbb{K}^n), \|\cdot\|_p)$, then (1.2) shows that the mapping $B_{|\cdot|_q} \ni P \mapsto \|P\|_p$ is bounded by $\frac{1}{k}$ whereas the mapping $B_{\|\cdot\|_p} \ni P \mapsto |P|_q$ is bounded by K. Also, the continuity of $P \mapsto \|P\|_p$ and $P \mapsto |P|_q$ over $(\mathcal{P}(^m \mathbb{K}^n), |\cdot|_q)$ and $(\mathcal{P}(^m \mathbb{K}^n), \|\cdot\|_p)$ respectively, together with the fact that the closed unit balls of the spaces $(\mathcal{P}(^m \mathbb{K}^n), |\cdot|_q)$ and $(\mathcal{P}(^m \mathbb{K}^n), \|\cdot\|_p)$ are compact justify, the following definitions:

Definition 1.1. If $1 \le p, q \le +\infty$ then we define

$$k'_{m,n,q,p} := \max \left\{ \|P\|_p : P \in B_{\|\cdot\|_q} \right\},\$$

$$K_{m,n,q,p} := \max \left\{ |P|_q : P \in B_{\|\cdot\|_p} \right\}.$$

Since $k'_{m,n,q,p} > 0$, we can define $k_{m,n,q,p} := \frac{1}{k'_{m,n,q,p}}$. Also, we say that $P \in \mathcal{P}(^m \mathbb{K}^n)$ is extremal for $k'_{m,n,q,p}$, $k_{m,n,q,p}$ or $K_{m,n,q,p}$, if $\|P\|_p = k'_{m,n,q,p}|P|_q$, $k_{m,n,q,p}\|P\|_p = |P|_q$ or $|P|_q = K_{m,n,q,p}\|P\|_p$, respectively.

Observe that $k_{m,n,q,p}$ is the biggest k fitting in the first inequality in (1.2) whereas $K_{m,n,q,p}$ is the smallest possible K in the second inequality in (1.2). Also, if a polynomial is extremal for $k'_{m,n,q,p}$, $k_{m,n,q,p}$, or $K_{m,n,q,p}$, then its multiples are also extremal.

Download English Version:

https://daneshyari.com/en/article/4613979

Download Persian Version:

https://daneshyari.com/article/4613979

Daneshyari.com