

Non-symmetric polarization

Andreas Defant *, Sunke Schlüters

A R T I C L E I N F O

Article history:

Received 19 November 2015
Available online 11 June 2016
Submitted by D. Ryabogin

Keywords:

Polarization
Polynomials
Multilinear forms
Schur multipliers

A B S T R A C T

Let P be an m-homogeneous polynomial in n-complex variables x_{1}, \ldots, x_{n}. Clearly, P has a unique representation in the form

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}} \cdots x_{j_{m}}
$$

and the m-form

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}}^{(1)} \cdots x_{j_{m}}^{(m)}
$$

satisfies $L_{P}(x, \ldots, x)=P(x)$ for every $x \in \mathbb{C}^{n}$. We show that, although L_{P} in general is non-symmetric, for a large class of reasonable norms $\|\cdot\|$ on \mathbb{C}^{n} the norm of L_{P} on $\left(\mathbb{C}^{n},\|\cdot\|\right)^{m}$ up to a logarithmic term $(c \log n)^{m^{2}}$ can be estimated by the norm of P on $\left(\mathbb{C}^{n},\|\cdot\|\right)$; here $c \geq 1$ denotes a universal constant. Moreover, for the ℓ_{p}-norms $\|\cdot\|_{p}, 1 \leq p<2$ the logarithmic term in the number n of variables is even superfluous.
© 2016 Published by Elsevier Inc.

1. Introduction

It is well-known that for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ there is a unique symmetric m-linear form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ such that $L(x, \ldots, x)=P(x)$ for all $x \in \mathbb{C}^{n}$. Uniqueness is an immediate consequence of the well-known polarization formula (see e.g. [6, Section 1.1]): For each m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and each symmetric m-form L on \mathbb{C}^{n} such that $P(x)=L(x, \ldots, x)$ for every $x \in \mathbb{C}^{n}$, we have for every choice of $x^{(1)}, \ldots, x^{(m)} \in \mathbb{C}^{n}$

$$
L\left(x^{(1)}, \ldots, x^{(m)}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{k}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{m} P\left(\sum_{k=1}^{m} \varepsilon_{k} x^{(k)}\right)
$$

[^0]Moreover, as an easy consequence, for each norm $\|\cdot\|$ on \mathbb{C}^{n}

$$
\begin{equation*}
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq \mathrm{e}^{m} \cdot \sup _{\|x\| \leq 1}|P(x)| . \tag{1}
\end{equation*}
$$

Existence can be seen as follows: Every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ has a unique representation of the form

$$
P(x)=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}} \cdots x_{j_{m}} .
$$

An m-form on \mathbb{C}^{n} which is naturally associated to P is given by

$$
L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\sum_{1 \leq j_{1} \leq \ldots \leq j_{m} \leq n} c_{\left(j_{1}, \ldots, j_{m}\right)} x_{j_{1}}^{(1)} \cdots x_{j_{m}}^{(m)},
$$

and the symmetrization $\mathcal{S} L_{P}$, defined by

$$
\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\frac{1}{m!} \sum_{\sigma} L_{P}\left(x^{(\sigma(1))}, \ldots, x^{(\sigma(m))}\right),
$$

where the sum runs over all $\sigma \in \Sigma_{m}$ (the set of all permutations of the first m natural numbers), then is the unique symmetric m-form satisfying $L(x, \ldots, x)=P(x)$ for every $x \in \mathbb{C}^{n}$.

Note that L_{P} is in general not symmetric. For an arbitrary non-symmetric multilinear form $L:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ and the associated polynomial $P(x):=L(x, \ldots, x)$ we have in general no estimate as in (1). Take for example $L:\left(\mathbb{C}^{n}\right)^{2} \rightarrow \mathbb{C}$ defined by $(x, y) \mapsto x_{1} y_{2}-x_{2} y_{1}$. Then $P(x)=L(x, x)=0$, but $L \neq 0$.

Our purpose is now to establish estimates as in (1) for the multilinear form L_{P} instead of $\mathcal{S} L_{P}$. The norms $\|\cdot\|$ we consider on \mathbb{C}^{n} are 1 -unconditional, i.e. $x, y \in \mathbb{C}^{n}$ with $\left|x_{k}\right| \leq\left|y_{k}\right|$ for every k implies $\|x\| \leq\|y\|$. Examples are the ℓ_{p}-norms $\|\cdot\|_{p}$ for $1 \leq p \leq \infty$.

Our main result is the following:
Theorem 1.1. There exists a universal constant $c_{1} \geq 1$ such that for every m-homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ and every 1 -unconditional norm $\|\cdot\|$ on \mathbb{C}^{n}

$$
\begin{equation*}
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq\left(c_{1} \log n\right)^{m^{2}} \cdot \sup _{\|x\| \leq 1}|P(x)| . \tag{2}
\end{equation*}
$$

Moreover, if $\|\cdot\|=\|\cdot\|_{p}$ for $1 \leq p<2$, then there even is a constant $c_{2}=c_{2}(p) \geq 1$ for which

$$
\begin{equation*}
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c_{2}^{m^{2}} \cdot \sup _{\|x\| \leq 1}|P(x)| . \tag{3}
\end{equation*}
$$

Bearing (1) in mind, it suffices to establish the inequality

$$
\sup _{\left\|x^{(k)}\right\| \leq 1}\left|L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right| \leq c \cdot \sup _{\left\|x^{(k)}\right\| \leq 1}\left|\mathcal{S} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right)\right|
$$

with a suitable constant c. We will prove this inequality by iteration, based on the following theorem. For $1 \leq k \leq n$ define the partial symmetrization $\mathcal{S}_{k} L_{P}:\left(\mathbb{C}^{n}\right)^{m} \rightarrow \mathbb{C}$ of L_{P} by

$$
\mathcal{S}_{k} L_{P}\left(x^{(1)}, \ldots, x^{(m)}\right):=\frac{1}{k!} \sum_{\sigma \in \Sigma_{k}} L_{P}\left(x^{(\sigma(1))}, \ldots, x^{(\sigma(k))}, x^{(k+1)}, \ldots, x^{(m)}\right)
$$

https://daneshyari.com/en/article/4613987

Download Persian Version:
https://daneshyari.com/article/4613987

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: andreas.defant@uni-oldenburg.de (A. Defant), sunke.schlueters@uni-oldenburg.de (S. Schlüters).

