Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Königs eigenfunction for composition operators on Bloch and H^∞ type spaces

霐

Ted Eklund^a, Pablo Galindo^{b,1}, Mikael Lindström^{a,*}

^a Department of Mathematics, Åbo Akademi University, FI-20500 Åbo, Finland
^b Departamento de Análisis Matemático, Universidad de Valencia, Valencia, Spain

ARTICLE INFO

Article history: Received 19 November 2015 Available online 19 April 2016 Submitted by D. Ryabogin

To Richard Aron on the occasion of his retirement, with very much appreciation

Keywords: Composition operator Königs eigenfunction

1. Introduction

The space of analytic functions on the open unit disk \mathbb{D} in the complex plane \mathbb{C} is denoted by $H(\mathbb{D})$. Every analytic selfmap $\varphi : \mathbb{D} \to \mathbb{D}$ of the unit disc induces a *composition operator* $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, given by $C_{\varphi}f = f \circ \varphi$. For general information of composition operators on classical spaces of analytic functions the reader is referred to the excellent monographs by Cowen and MacCluer [7] and Shapiro [19]. Throughout this paper we assume that $\varphi(0) = 0$ and $0 < |\varphi'(0)| < 1$, and study the Königs eigenfunction $\sigma \in H(\mathbb{D})$ for the operator $C_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$. Recall that σ is the unique solution to Schröder's equation $\sigma \circ \varphi = \varphi'(0)\sigma$ under the additional assumption $\sigma'(0) = 1$, and can be obtained as the limit of the sequence

$$\sigma_n := \frac{\varphi_n}{\varphi'(0)^n},$$

which converges to σ uniformly on compact subsets of the unit disc as $n \to \infty$. Here φ_n denotes the *n*-fold composition $\varphi \circ \varphi \circ \cdots \circ \varphi$. For further details on the Königs eigenfunction, for example the fact that σ is

E-mail addresses: ted.eklund@abo.fi (T. Eklund), pablo.galindo@uv.es (P. Galindo), mikael.lindstrom@abo.fi (M. Lindström).

ABSTRACT

We discuss when the Königs eigenfunction associated with a non-automorphic selfmap of the complex unit disc that fixes the origin belongs to Banach spaces of holomorphic functions of Bloch and H^{∞} type. In the latter case, our characterization answers a question of P. Bourdon. Some spectral properties of composition operators on H^{∞} for unbounded Königs eigenfunction are obtained.

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

 $^{^{1}}$ This paper was partly developed while the second author visited Åbo Akademi University. He warmly thanks Prof. Lindström for his kind hospitality and support. Partially supported by MINECO-MTM2014-053241-P.

http://dx.doi.org/10.1016/j.jmaa.2016.04.036

⁰⁰²²⁻²⁴⁷X/© 2016 Elsevier Inc. All rights reserved.

univalent if and only if the symbol φ is univalent, see chapter 6 in [19]. More generally, if $u \in H(\mathbb{D})$, we consider a weighted composition operator $uC_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$, defined by $uC_{\varphi}(f) = u \cdot (f \circ \varphi)$. Assuming that $u(0) \neq 0$, the eigenvalues of the operator $uC_{\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$ are given by $\{u(0)\varphi'(0)^n\}_{n=0}^{\infty}$. Each eigenvalue $u(0)\varphi'(0)^n$ has multiplicity one with the function $g\sigma^n$ spanning the corresponding eigenspace, where $g \in H(\mathbb{D})$ is given by

$$g := \lim_{n \to \infty} g_n$$
, where $g_n := \frac{u_{(n)}}{u(0)^n}$ and $u_{(n)} := \prod_{k=0}^{n-1} u \circ \varphi_k$.

Here the convergence is also uniform on compact subsets of \mathbb{D} . However, if the composition operator C_{φ} : $\mathcal{A} \to \mathcal{A}$ is restricted to some smaller space $\mathcal{A} \subset H(\mathbb{D})$, then the function σ might not necessarily be an eigenfunction for C_{φ} since it might be that $\sigma \notin \mathcal{A}$. Therefore our main interest is to determine when σ belongs to different function spaces. The paper focuses on the connection between σ being an element of the function space at hand and spectral properties of the composition operator. Among the spaces we will be interested in are the Bloch-type spaces \mathcal{B}_{α} and \mathcal{B}^{0}_{α} defined by

$$\begin{aligned} \mathcal{B}_{\alpha} &= \left\{ f \in H(\mathbb{D}) \, : \, f(0) = 0, \, ||f||_{\mathcal{B}_{\alpha}} := \sup_{z \in \mathbb{D}} v_{\alpha}(z) |f'(z)| \, < \, +\infty \right\} \\ \mathcal{B}_{\alpha}^{0} &= \left\{ f \in \mathcal{B}_{\alpha} \, : \, \lim_{|z| \to 1^{-}} v_{\alpha}(z) |f'(z)| = 0 \right\}, \end{aligned}$$

where $v_{\alpha}(z) := (1 - |z|^2)^{\alpha}$ with $\alpha > 0$. The classical Bloch space \mathcal{B}_1 is denoted by \mathcal{B} and the little Bloch space \mathcal{B}_1^0 by \mathcal{B}_0 . The growth spaces H_v^{∞} and H_v^0 are defined by

$$\begin{split} H_v^{\infty} &= \; \Big\{ f \in H(\mathbb{D}) \; : \; ||f||_{H_v^{\infty}} := \sup_{z \in \mathbb{D}} v(z)|f(z)| \; < \; + \infty \Big\} \\ H_v^0 \; &= \; \Big\{ f \in H_v^{\infty} \; : \; \lim_{|z| \to 1^-} v(z)|f(z)| = 0 \Big\}, \end{split}$$

where the weight $v : \mathbb{D} \to \mathbb{R}$ is a continuous, strictly positive and bounded function which is also assumed to be radial, v(z) = v(|z|), and non-increasing with respect to |z|. For the spectrum $\sigma_{\mathcal{A}}(C_{\varphi})$ of the composition operator $C_{\varphi} : \mathcal{A} \to \mathcal{A}$ where \mathcal{A} is any of the spaces $H^{\infty}_{v_{\alpha}}$, $H^{0}_{v_{\alpha}}$, \mathcal{B}_{α} or \mathcal{B}^{0}_{α} one has [2] that:

$$\left\{ \lambda \in \mathbb{C} : |\lambda| \le r_{e,\mathcal{A}}(C_{\varphi}) \right\} \cup \{\varphi'(0)^n\}_{n=1}^{\infty} \subset \sigma_{\mathcal{A}}(C_{\varphi}) \subset \\ \left\{ \lambda \in \mathbb{C} : |\lambda| \le r_{e,\mathcal{A}}(C_{\varphi}) \right\} \cup \{\varphi'(0)^n\}_{n=0}^{\infty}$$

Notice that the constant function 1 is not an eigenfunction for the Bloch type spaces as it does not lie in the space.

Bourdon [5] succeeded in showing that

1

$$\sigma \in H^0_{v_{\alpha}} \iff |\varphi'(0)| > r_{e,H^0_{v_{\alpha}}}(C_{\varphi}), \tag{1.1}$$

and the corresponding result is also true for the H^p -spaces with $p < \infty$ [17]. The natural approach was thus to start by investigating if the result

$$\sigma \in \mathcal{A} \iff |\varphi'(0)| > r_{e,\mathcal{A}}(C_{\varphi}) \tag{1.2}$$

also holds for the Bloch-type spaces. Since $\mathcal{B}^0_{\alpha+1} = H^0_{v_{\alpha}}$ for $\alpha > 0$ and the corresponding norms are equivalent, the result (1.1) of Bourdon gives that

$$\sigma \in \mathcal{B}^0_{\alpha+1} \Longleftrightarrow \sigma \in H^0_{v_\alpha} \Longleftrightarrow |\varphi'(0)| > r_{e,H^0_{v_\alpha}}(C_\varphi) = r_{e,\mathcal{B}^0_{\alpha+1}}(C_\varphi),$$

so we have the following

Download English Version:

https://daneshyari.com/en/article/4613988

Download Persian Version:

https://daneshyari.com/article/4613988

Daneshyari.com