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We consider two problems on sections of convex bodies in hyperbolic space. The first 
one is a modified version of the Busemann–Petty problem. We look at conditions 
that guarantee a positive answer to this problem in all dimensions. The second 
problem is an analogue of a result of Makai, Martini, and Ódor about origin-
symmetry. If in every direction the parallel section function has a critical value at 
zero, then the body is origin-symmetric. For both problems we use Fourier transform 
techniques.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 1956, Busemann and Petty [1] asked the following question. If K, L ⊂ Rn are origin-symmetric convex 
bodies such that

voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥), ∀ ξ ∈ Sn−1,

is it necessary that voln(K) ≤ voln(L)? Here, ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0}.
The Busemann–Petty problem was completely solved only in the nineties of the last century due to efforts 

of many mathematicians. The answer is affirmative if n ≤ 4 and negative if n ≥ 5; see [6] for the history of 
the problem and its solution. Since the answer to the problem is negative in most dimensions, it is natural to 
look for modified conditions that make the answer positive in all dimensions. This was done by Koldobsky, 
Yaskin, and Yaskina [8].

Let K ⊂ Rn be a convex body. Its section function is defined by

SK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1.
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We extend this function from the sphere to Rn \ {0} as a homogeneous function of degree −1. For α ∈ R, 
define the fractional Laplacian (−Δ)α/2 of SK by

(−Δ)α/2SK = 1
(2π)n

(
|x|α2 ŜK(x)

)∧
,

with the Fourier transform taken in the sense of distributions. It is proved in [8] that if K, L ⊂ Rn are 
infinitely smooth origin-symmetric convex bodies such that

(−Δ)α/2SK(ξ) ≤ (−Δ)α/2SL(ξ), ∀ξ ∈ Sn−1, (1)

for some α ∈ R with n − 4 ≤ α ≤ n − 1, then voln(K) ≤ voln(L). For 0 ≤ α < n − 4, there are 
origin-symmetric convex bodies K, L ⊂ Rn such that equation (1) holds, but voln(K) > voln(L). Observe 
that α = 0 corresponds to the classical Busemann–Petty problem.

In recent years, the Busemann–Petty problem was considered in spaces other than real Euclidean; see 
[2,7,12]. In particular, the Busemann–Petty problem in hyperbolic and spherical spaces was solved in [12]. 
To formulate the result in hyperbolic space, let us use the following notation. Fix an origin O in Hn and 
denote by TO(Hn) the tangent space to Hn at O. Consider the unit sphere Sn−1 in TO(Hn). For each 
ξ ∈ Sn−1 let ξ⊥ denote the unique totally geodesic submanifold of Hn passing through O, whose normal 
vector at O is ξ. We will use hvol to denote volume in hyperbolic space. Let K and L be origin-symmetric 
convex bodies in hyperbolic space Hn such that

hvoln−1(K ∩ ξ⊥) ≤ hvoln−1(L ∩ ξ⊥), ∀ ξ ∈ Sn−1,

does it follow that hvoln(K) ≤ hvoln(L)? It was shown in [12] that this is true if n = 2, and false if n ≥ 3. In 
view of this it is natural to modify the assumptions of the hyperbolic Busemann–Petty problem to obtain 
the affirmative answer in all dimensions, as it was done in the Euclidean case in [8]. As above we can define 
the hyperbolic section function

HSK(ξ) = hvoln−1(K ∩ ξ⊥), ξ ∈ Sn−1,

extend it to Rn as a homogeneous function of degree −1, and consider (−Δ)α/2HSK .
We show that equation (1), interpreted in the setting of hyperbolic space, ensures hvoln(K) ≤ hvoln(L)

when n − 2 ≤ α < n − 1. For 0 ≤ α < n − 2, we find counterexamples. Our proof is based on the study of 
the Fourier transform of the distribution

|x|−α
2 ‖x‖−1

K

1 −
(

|x|2
‖x‖K

)2 .

We would like to note that this requires ideas different from those used in [8].
Let us now discuss the second problem that we study in this paper. Let K be a convex body in Rn. Its 

parallel section function in the direction ξ ∈ Sn−1 is defined by

AK,ξ(t) = voln−1(K ∩ {ξ⊥ + tξ}), t ∈ R.

Brunn’s theorem implies that if K is origin-symmetric and convex, then max
t∈R

AK,ξ(t) = AK,ξ(0), for every 

ξ ∈ Sn−1. A natural question is whether the converse is true and it was affirmatively answered by Makai, 
Martini, and Ódor [9]. If K is a convex body in Rn such that AK,ξ(0) = max

t∈R

AK,ξ(t) for all ξ ∈ Sn−1, then 

K is origin-symmetric.
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